23 resultados para GAS-SOURCE MBE

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isotopic characterization of carbon in the dissolved inorganic carbon (DIC) pool is fundamental for a wide array of scientific studies directly related to gas hydrate research. In order to generate integrated and internally consistent data of d13C of DIC in pore waters from Hydrate Ridge, we used the modern continuous flow technology of a GasBench II automated sampler interfaced to a gas source stable isotope mass spectrometer for the rapid determination (~80 samples/day) of d13C DIC in small-volume water samples. The overall precision of this technique is conservatively estimated to be better than ±0.15 per mil (1 sigma), which is similar to the precision of methods in current use. Here we present the data generated from Ocean Drilling Program Leg 204 pore water samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The four sites drilled on the Irish continental margin (Goban Spur) yielded sediments ranging in age from Holocene to Barremian. Most of the sediments were deposited in well oxygenated waters, and the small amounts of organic matter they contain are highly oxidized. During a few time intervals from the Cenomanian to earliest Turonian, however, the oxygen content of the bottom waters reached very low levels, resulting in the deposition of homogeneous or laminated black sediments containing from 0.5 to 11% total organic carbon (TOC). The original organic matter was of mixed marine and terrestrial origin. The oxidizing-reducing cycles represented by interbedded black and light sediments are probably a result of changes in both circulation and productivity. The black sediments at Sites 550, 551, and 549 were probably deposited near the lower end, middle, and upper end, respectively, of an expanded oxygen-minimum layer. The oil and gas source potential of the laminated black sediments is very good to excellent. The organic-carbon-lean sediments deposited under oxidizing conditions have no oil or gas source potential. The thermal maturity of all sediments is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a continuing program of organic-geochemistry studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal-alteration indices of organic matter in samples collected from the landward wall of the Japan Trench on Legs 56 and 57. The samples were canned aboard ship, enabling us to measure also their gas contents. In addition, we analyzed the heavy C15+ hydrocarbons, NSO compounds, and asphaltenes extracted from selected samples. Our samples form a transect down the trench wall, from Holes 438 and 438A (water depth 1558 m), through Holes 435 and 435A (water depth 3401 m), and 440 (water depth 4507 m), to Holes 434 and 434B (water depth 5986 m). The trench wall is the continental slope of Japan. Its sediments are Cenozoic hemipelagic diatomaceous muds that were deposited where they are found or have slumped from farther up the slope. Their terrigenous components probably were deposited from near-bottom nepheloid layers transported by bottom currents or in low density flows (Arthur et al., 1978). Our objective was to find out what types of organic matter exist in the sediment and to estimate their potential for generation of hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ocean is responsible for up to a third of total global nitrous oxide (N2O) emissions, but uncertainties in emission rates of this potent greenhouse gas are high (>100%). Here we use a marine biogeochemical model to assess six major uncertainties in estimates of N2O production, thereby providing guidance in how future studies may most effectively reduce uncertainties in current and future marine N2O emissions. Potential surface N2O production from nitrification causes the largest uncertainty in N2O emissions (estimated up to ~1.6 Tg N/yr, or 48% of modeled values), followed by the unknown oxygen concentration at which N2O production switches to N2O consumption (0.8 Tg N/yr, or 24% of modeled values). Other uncertainties are minor, cumulatively changing regional emissions by <15%. If production of N2O by surface nitrification could be ruled out in future studies, uncertainties in marine N2O emissions would be halved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (~24% salinity), subzero (-5 C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ~84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (~50%) with the low CH4/C2 + ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.