3 resultados para GAM

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Euphausiids constitute major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Changes in the abiotic conditions also shape Euphausiid metabolism including aerobic and anaerobic energy production. Here we introduce a global krill respiration model which includes the effect of latitude (LAT), the day of the year of interest (DoY), and the number of daylight hours on the day of interest (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth) in the ANN model (Artificial Neural Networks). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r**2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. We also tested for seasonality the standard respiration rate of the most common species that were investigated until now in a large range of DLh and DoY with Multiple Linear Regression (MLR) or General Additive model (GAM). GAM successfully integrated DLh (r**2= 0.563) and DoY (r**2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. Neither the MLR nor the GAM approach worked for the North Pacific krill Euphausia pacifica, and MLR for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.