4 resultados para French and Brazilian contexts

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pockmarks are seafloor depressions commonly associated with fluid escape from the seabed and are believed to contribute noticeably to the transfer of methane into the ocean and ultimately into the atmosphere. They occur in many different areas and geological contexts, and vary greatly in size and shape. Nevertheless, the mechanisms of pockmark growth are still largely unclear. Still, seabed methane emissions contribute to the global carbon budget, and understanding such processes is critical to constrain future quantifications of seabed methane release at local and global scales. The giant Regab pockmark (9°42.6' E, 5°47.8' S), located at 3160 m water depth near the Congo deep-sea channel (offshore southwestern Africa), was investigated with state-of-the-art mapping devices mounted on IFREMER's (French Research Institute for Exploitation of the Sea) remotely operated vehicle (ROV) Victor 6000. ROV-borne micro-bathymetry and backscatter data of the entire structure, a high-resolution photo-mosaic covering 105,000 m2 of the most active area, sidescan mapping of gas emissions, and maps of faunal distribution as well as of carbonate crust occurrence are combined to provide an unprecedented detailed view of a giant pockmark. All data sets suggest that the pockmark is composed of two very distinctive zones in terms of seepage intensity. We postulate that these zones are the surface expression of two fluid flow regimes in the subsurface: focused flow through a fractured medium and diffuse flow through a porous medium. We conclude that the growth of giant pockmarks is controlled by self-sealing processes and lateral spreading of rising fluids. In particular, partial redirection of fluids through fractures in the sediments can drive the pockmark growth in preferential directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tibetan Plateau (TP), including its surrounding mountain ranges, represents the largest store of ice outside the polar regions. It hosts numerous lakes as well as the head waters of major Asian rivers, on which billions of people depend, and it is particularly sensitive to climate change. The moisture transport to the TP is controlled by the Indian and Pacific monsoon and the Westerlies. Understanding the evolution of the interaction of these circulation systems requires studies on climate archives in different spatial and temporal contexts. The objective of this study is to learn more about the interannual variability of precipitation patterns across the TP and how different hydrologic systems react to different climatic factors. Aragonite shells of the aquatic gastropod Radix, which is widely distributed in the region, may represent suitable archives for inferring hydrologic and climatic signals in particularly high resolution. Therefore, sclerochronological studies of d18O and d13C ratios in Radix shells from seven lakes were conducted, each representing a different hydrologic and climatic setting, on a transect from the Pamirs across the TP. The shell patterns exhibit an increasing influence of precipitation and a decreasing influence of evaporation on the isotope compositions from west to east. d18O values of shells from lakes on the eastern and central TP (Donggi Cona, Yamdrok Yumco, Tarab Co) mirror monsoon signals, indicated by more negative values and higher variabilities compared to the more western lakes (Karakul, Bangong/Nyak, Manasarovar). In Yadang Co, located on the central southern TP, the monsoon rains did not reach the lake in the sampling year, although it is located in a region which is usually affected by monsoon circulation. The d18O values are used to differentiate the annual hydrological cycle into ice cover period, melt water period, precipitation period and evaporation period. d13C compositions in the shells particularly depend on specific habitats, which vary in biological productivity and in carbon sources. d18O and d13C patterns show a positive covariance in shells originating from large closed basins. The results show that Radix shells mirror general climatic differences between the seven lake regions. These differences reflect both regional and local climate signals in sub-seasonal resolution, without noticeable dependence on the particular lake system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) distribution and dynamics are investigated at the DYFAMED site (central Ligurian Sea, NW Mediterranean) in relation to hydrological and biological contexts, using a 4-year time-series dataset (1991-1994). The DYFAMED site is regarded as a one-dimensional station where simple hydrological mechanisms prevail and where the ecosystem is quite well understood. An average vertical profile of DOC concentration ([DOC]) indicates that maximal concentrations and variability are concentrated in the surface layers. For depths >800 m, the annual variations are on average similar to the analytical standard deviation (~2 µM). The "composite" [DOC] distribution (average distribution over a typical year, integrating about 40 monthly profiles) for surface waters (0-200 m) is closely related to hydrological and phytoplanktonic forcings. It exhibits summer DOC accumulation in surface waters, due to spring-summer stratification and successive phytoplanktonic events such as spring and summer blooms, and winter DOC removal to deeper waters, due to intense vertical mixing. The analysis of vertical [DOC] gradient at 100-m depth as a function of the integrated DOC content in the 0-100-m layer makes it possible to objectively distinguish three specific periods: the winter vertical mixing period, the period of stratification and spring phytoplankton bloom, and the period of stratification re-inforcement and summer-fall phytoplankton bloom. We recalculate the vertical DOC fluxes to deep waters using a larger original dataset, after the first direct calculation (Deep-Sea Res. 40 (10) (1993) 1963, 1972) that was reproduced for other oceanic areas. The seasonal variations of the "composite" [DOC] distribution in surface waters are significantly correlated to the apparent oxygen utilization distribution, but the biogeochemical significance of such a correlation is still under examination. The global significance of our local findings is presented and the role of the oceanic DOC in the global carbon cycle is emphasized, especially with respect to several current issues, such as the oceanic "missing sink" and the equivalence between new production and exported production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.