6 resultados para Fractional-order control
em Publishing Network for Geoscientific
Resumo:
The relationship between whole-core compressional wave velocities and gamma-ray attenuation porosities of sediments cored at CRP-1 is examined and compared with results from core-plug samples and global models. Both core-plug and whole-core velocities show a strong dependence on porosity: this relationship appears to be independent of lithology. In the range from 0.1 to 0.4 of fractional porosity (Miocene strata), plug velocities are generally 0.2 - 0.5 km s-1 higher than whole-core velocities. Possible reasons include decreased rigidity in the whole core and diagenetic changes in the plugs. Possibly both velocity measurements are correct but neither is fully representative for in situ conditions. It appears that the core-plug results are more compatible with data from other regions than the whole-core data. After removing first-order compaction control from the whole-core porosity record, a second-order control by clay content can be quantified as a simple positive linear regression (R=0.6). In contrast, after correction for first-order control, porosity and velocity are not significantly influenced by lonestone abundance except for rare, very large lonestones.
Resumo:
Monitoring the impact of sea storms on coastal areas is fundamental to study beach evolution and the vulnerability of low-lying coasts to erosion and flooding. Modelling wave runup on a beach is possible, but it requires accurate topographic data and model tuning, that can be done comparing observed and modeled runup. In this study we collected aerial photos using an Unmanned Aerial Vehicle after two different swells on the same study area. We merged the point cloud obtained with photogrammetry with multibeam data, in order to obtain a complete beach topography. Then, on each set of rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for both events recognizing the wet area left by the waves. We then used our topography and numerical models to simulate the wave runup and compare the model results to observed values during the two events. Our results highlight the potential of the methodology presented, which integrates UAV platforms, photogrammetry and Geographic Information Systems to provide faster and cheaper information on beach topography and geomorphology compared with traditional techniques without losing in accuracy. We use the results obtained from this technique as a topographic base for a model that calculates runup for the two swells. The observed and modeled runups are consistent, and open new directions for future research.
Resumo:
This data sets contains LPJ-LMfire dynamic global vegetation model output covering Europe and the Mediterranean for the Last Glacial Maximum (LGM; 21 ka) and for a preindustrial control simulation (20th century detrended climate). The netCDF data files are time averages of the final 30 years of the model simulation. Each netCDF file contains four or five variables: fractional cover of 9 plant functional types (PFTs; cover), total fractional coverage of trees (treecover), population density of hunter-gatherers (foragerPD; only for the "people" simulations), fraction of the gridcell burned on 30-year average (burnedf), and vegetation net primary productivity (NPP). The model spatial resolution is 0.5-degrees For the LGM simulations, LPJ-LMfire was driven by the PMIP3 suite of eight GCMs for which LGM climate simulations were available. Also provided in this archive is the result of an LPJ-LMfire run that was forced by the average climate of all GCMs (the "GCM-mean" files), and the average of each of the individual LPJ-LMfire runs over the eight LGM scenarios individually (the "LPJ-mean" files). The model simulations are provided that include the influence of human presence on the landscape (the "people" files), and in a "world without humans" scenario (the "natural" files). Finally this archive contains the preindustrial reference simulation with and without human influence ("PI_reference_people" and "PI_reference_nat", respectively). There are therefore 22 netCDF files in this archive: 8 each of LGM simulations with and without people (total 16) and the "GCM mean" simulation (2 files) and the "LPJ mean" aggregate (2 files), and finally the two preindustrial "control" simulations ("PI"), with and without humans (2 files). In addition to the LPJ-LMfire model output (netCDF files), this archive also contains a table of arboreal pollen percent calculated from pollen samples dated to the LGM at sites throughout (lgmAP.txt), and a table containing the location of archaeological sites dated to the LGM (LGM_archaeological_site_locations.txt).
Resumo:
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.
Resumo:
TEXL86 and TEXH86 are organic palaeothermometers based on the lipids of Group 1 Crenarchaeota, recently proposed as a modified version of the original TEX86 index, but with significantly improved geographical coverage. Since few data from the global core top calibration are from the Pacific, this study was carried out to assess whether the global core top calibration is regionally biased or not. The result of principal components analysis of the fractional abundance of GDGTs, an analysis of variance (ANOVA) and the comparison of the residuals of TEXH 86 derived sea surface temperature (SST) estimates of the Pacific subset with that of the global data set suggest that the Pacific subset has a similar TEXH 86-SST relationship with the global data set. However, the regression line through the Pacific data and an ANOVA on the residuals of TEXL 86 derived SST estimates suggest otherwise. The contradictory findings are likely to stem from the large scatter in the Pacific TEXL 86 values in the mid temperature range. While regionality does not seem to exert a strong bias on TEXL 86 and TEXH 86 calibration, it appears that there is a strong need to resolve the large scatter in the global data set, especially in the mid and high latitudes, in order to improve the calibration for a better SST estimation.