12 resultados para Forest growth model

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought is a key factor affecting forest ecosystem processes at different spatio-temporal scales. For accurately modeling tree functioning ? and thus for producing reliable simulations of forest dynamics ? the consideration of the variability in the timing and extent of drought effects on tree growth is essential, particularly in strongly seasonal climates such as in the Mediterranean area. Yet, most dynamic vegetation models (DVMs) do not include this intra-annual variability of drought effects on tree growth. We present a novel approach for linking tree-ring data to drought simulations in DVMs. A modified forward model of tree-ring width (VS-Lite) was used to estimate seasonal- and site-specific growth responses to drought of Scots pine (Pinus sylvestris L.), which were subsequently implemented in the DVM ForClim. Ring-width data from sixteen sites along a moisture gradient from Central Spain to the Swiss Alps, including the dry inner Alpine valleys, were used to calibrate the forward ring-width model, and inventory data from managed Scots pine stands were used to evaluate ForClim performance. The modified VS-Lite accurately estimated the year-to-year variability in ring-width indices and produced realistic intra-annual growth responses to soil drought, showing a stronger relationship between growth and drought in spring than in the other seasons and thus capturing the strategy of Scots pine to cope with drought. The ForClim version including seasonal variability in growth responses to drought showed improved predictions of stand basal area and stem number, indicating the need to consider intra-annual differences in climate-growth relationships in DVMs when simulating forest dynamics. Forward modeling of ring-width growth may be a powerful tool to calibrate growth functions in DVMs that aim to simulate forest properties in across multiple environments at large spatial scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surf clams Mesodesma mactroides Reeve, 1854 and Donax hanleyanus Philippi, 1847 are the two dominating species in macrobenthic communities of sandy beaches off northern Argentina, with the latter now surpassing M. mactroides populations in abundance and biomass. Before stock decimation caused by exploitation (during the 1940s and 1950s) and mass mortality events (1995, 1999 and 2007) M. mactroides was the prominent primary consumer in the intertidal ecosystem and an important economic resource in Argentina. Since D. hanleyanus was not commercially fished and not affected by mass mortality events, it took over as the dominant species, but did never reach the former abundance of M. mactroides. Currently abundance and biomass of both surf clams are a multiple smaller than those of forty years ago, indicating the conservation status of D. hanleyanus and M. mactroides as endangered. Therefore the aim of this study is to analyse the population dynamics (population structure, growth and reproductive biology) of D. hanleyanus and M. mactroides, and to compare the results with historical data in order to detect possible differences within surf clam populations forty years ago and at present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results from electromagnetic induction surveys of sea-ice thickness in Storfjorden, Svalbard, reveal large interannual ice-thickness variations in a region which is typically characterized by a reoccurring polynya. The surveys were performed in March 2003, May 2006 and March 2007 with helicopter- and ship-based sensors. The thickness distributions are influenced by sea-ice and atmospheric boundary conditions 2 months prior to the surveys, which are assessed with synthetic aperture radar (SAR) images, regional QuikSCAT backscatter maps and wind information from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Locally formed thin ice from the Storfjorden polynya was frequently observed in 2003 and 2007 (mean thickness 0.55 and 0.37 m, respectively) because these years were characterized by prevailing northeasterly winds. In contrast, the entire fjord was covered with thick external sea ice in 2006 (mean thickness 2.21 m), when ice from the Barents Sea was driven into the fjord by predominantly southerly winds. The modal thickness of this external ice in 2006 increased from 1.2 m in the northern fjord to 2.4 m in the southern fjord, indicating stronger deformation in the southern part. This dynamically thickened ice was even thicker than multi-year ice advected from the central Arctic Ocean in 2003 (mean thickness 1.83 m). The thermodynamic ice thickness of fast ice as boundary condition is investigated with a one-dimensional sea-ice growth model (1DICE) forced with meteorological data from the weather station at the island of Hopen, southeast of Storfjorden. The model results are in good agreement with the modal thicknesses of fast-ice measurements in all years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of Pre- and Protohistoric anthropogenic land cover changes needs to be quantified i) to establish a baseline for comparison with current human impact on the environment and ii) to separate it from naturally occurring changes in our environment. Results are presented from the simple, adaptation-driven, spatially explicit Global Land Use and technological Evolution Simulator (GLUES) for pre-Bronze age demographic, technological and economic change. Using scaling parameters from the History Database of the Global Environment as well as GLUES-simulated population density and subsistence style, the land requirement for growing crops is estimated. The intrusion of cropland into potentially forested areas is translated into carbon loss due to deforestation with the dynamic global vegetation model VECODE. The land demand in important Prehistoric growth areas - converted from mostly forested areas - led to large-scale regional (country size) deforestation of up to 11% of the potential forest. In total, 29 Gt carbon were lost from global forests between 10 000 BC and 2000 BC and were replaced by crops; this value is consistent with other estimates of Prehistoric deforestation. The generation of realistic (agri-)cultural development trajectories at a regional resolution is a major strength of GLUES. Most of the pre-Bronze age deforestation is simulated in a broad farming belt from Central Europe via India to China. Regional carbon loss is, e.g., 5 Gt in Europe and the Mediterranean, 6 Gt on the Indian subcontinent, 18 Gt in East and Southeast Asia, or 2.3 Gt in subsaharan Africa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol/m**2/s, LL; 200 µmol/m**2/s, ML; 460 µmol/m**2/s, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12-18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv'/Fm') decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

. Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a concept to decide on potential growth processes during periods of shrinking and expanding SR below a precedent maximum. Here we investigated two physiological concepts: the linear growth (LG) concept assuming linear growth vs. the zero growth (ZG) concept assuming no growth during periods of shrunken stems. . We evaluated the physiological mechanisms underlying these two concepts and assessed the respective plausibility with SR data obtained from 15 deciduous and evergreen trees. . The LG concept showed steady growth rates, whereas the ZG concept showed strongly varying growth rates over time, more in accordance with mechanistic expectations. Further, growth increased for maximally 120 min after periods of shrunken stems, indicating limited growth activity during that period. However, the fraction of this extra growth was found to be small. Furthermore, TWD of the ZG concept was better explained by a hydraulic plant model than TWD of the LG concept. . We conclude that periods of shrunken stems allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings.