218 resultados para Forest Cover Zones
em Publishing Network for Geoscientific
Resumo:
Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 BP to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 BP through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 BP onwards. From 2200 BP land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 BP. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.
Resumo:
Detailed knowledge of forest cover dynamics is crucial for many applications from resource management to ecosystem service assessments. Landsat data provides the necessary spatial, temporal and spectral detail to map and analyze forest cover and forest change processes. With the opening of the Landsat archive, new opportunities arise to monitor forest dynamics on regional to continental scales. In this study we analyzed changes in forest types, forest disturbances, and forest recovery for the Carpathian ecoregion in Eastern Europe. We generated a series of image composites at five year intervals between 1985 and 2010 and utilized a hybrid analysis strategy consisting of radiometric change classification, post-classification comparison and continuous index- and segment-based post-disturbance recovery assessment. For validation of the disturbance map we used a point-based accuracy assessment, and assessed the accuracy of our forest type maps using forest inventory data and statistically sampled ground truth data for 2010. Our Carpathian-wide disturbance map achieved an overall accuracy of 86% and the forest type maps up to 73% accuracy. While our results suggested a small net forest increase in the Carpathians, almost 20% of the forests experienced stand-replacing disturbances over the past 25 years. Forest recovery seemed to only partly counterbalance the widespread natural disturbances and clear-cutting activities. Disturbances were most widespread during the late 1980s and early 1990s, but some areas also exhibited extensive forest disturbances after 2000, especially in the Polish, Czech and Romanian Carpathians. Considerable shifts in forest composition occurred in the Carpathians, with disturbances increasingly affecting coniferous forests, and a relative decrease in coniferous and mixed forests. Both aspects are likely connected to an increased vulnerability of spruce plantations to pests and pathogens in the Carpathians. Overall, our results exemplify the highly dynamic nature of forest cover during times of socio-economic and institutional change, and highlight the value of the Landsat archive for monitoring these dynamics.
Resumo:
Reliable information of past vegetation changes are important to project future changes, especially for areas undergoing rapid transitioning such as the boreal treeline. The application of detailed sedDNA records has the potential to enhance our understanding of vegetation changes gained mainly from pollen studies of lake sediments. This study investigates sedDNA and pollen records from 31 lakes along a gradient of increasing larch forest cover in northern Siberia (Taymyr Peninsula) and compares them with vegetation field surveys within the lake's catchment. With respect to vegetation richness, sedDNA recorded 114 taxa, about half of them to species level, while pollen analyses identified 43 pollen taxa. Both approaches exceed the 31 taxa revealed by vegetation field surveys of 400 m**2 plots. From north to south, Larix percentages increase, as is consistently recorded by all three methods. Furthermore, tundra sites are separated from forested sites in the plots of the principal component analyses. Comparison of ordination results by Procrustes and Protest analyses yields a significant fit among all compared pairs of records. Despite the overall comparability of sedDNA and pollen analyses certain idiosyncrasies in the compositional signal are observed, such as high percentages of Alnus and Betula in all pollen spectra and high percentages of Salix in all sedDNA spectra. In conclusion, our results from the treeline show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e. presence/absence of certain vegetation taxa in the direct vicinity of the lake) and perform as good as pollen in tracing regional vegetation composition.
Resumo:
We are investigating the late Holocene rise in CO2 by performing four experiments with the climate-carbon-cycle model CLIMBER2-LPJ. Apart from the deep sea sediments, important carbon cycle processes considered are carbon uptake or release by the vegetation, carbon uptake by peatlands, and CO 2 release due to shallow water sedimentation of CaCO3. Ice core data of atmospheric CO2 between 8 ka BP and preindustrial climate can only be reproduced if CO2 outgassing due to shallow water sedimentation of CaCO3 is considered. In this case the model displays an increase of nearly 20 ppmv CO2 between 8 ka BP and present day. Model configurations that do not contain this forcing show a slight decrease in atmospheric CO2. We can therefore explain the late Holocene rise in CO2 by invoking natural forcing factors only, and anthropogenic forcing is not required to understand preindustrial CO2 dynamics.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.
Resumo:
To improve our knowledge of the influence of land-use on solute behaviour and export rates in neotropical montane catchments we investigated total organic carbon (TOC), Ca, Mg, Na, K, NO3 and SO4 concentrations during April 2007-May 2008 at different flow conditions and over time in six forested and pasture-dominated headwaters (0.7-76 km2) in Ecuador. NO3 and SO4 concentrations decreased during the study period, with a continual decrease in NO3 and an abrupt decrease in February 2008 for SO4. We attribute this to changing weather regimes connected to a weakening La Niña event. Stream Na concentration decreased in all catchments, and Mg and Ca concentration decreased in all but the forested catchments during storm flow. Under all land-uses TOC increased at high flows. The differences in solute behaviour during storm flow might be attributed to largely shallow subsurface and surface flow paths in pasture streams on the one hand, and a predominant origin of storm flow from the organic layer in the forested streams on the other hand. Nutrient export rates in the forested streams were comparable to the values found in literature for tropical streams. They amounted to 6-8 kg/ha/y for Ca, 7-8 kg/ha/y for K, 4-5 kg/ha/y for Mg, 11-14 kg/ha/y for Na, 19-22 kg/ha/y for NO3 (i.e. 4.3-5.0 kg/ha/y NO3-N) and 17 kg/ha/y for SO4. Our data contradict the assumption that nutrient export increases with the loss of forest cover. For NO3 we observed a positive correlation of export value and percentage forest cover.
Resumo:
This data sets contains LPJ-LMfire dynamic global vegetation model output covering Europe and the Mediterranean for the Last Glacial Maximum (LGM; 21 ka) and for a preindustrial control simulation (20th century detrended climate). The netCDF data files are time averages of the final 30 years of the model simulation. Each netCDF file contains four or five variables: fractional cover of 9 plant functional types (PFTs; cover), total fractional coverage of trees (treecover), population density of hunter-gatherers (foragerPD; only for the "people" simulations), fraction of the gridcell burned on 30-year average (burnedf), and vegetation net primary productivity (NPP). The model spatial resolution is 0.5-degrees For the LGM simulations, LPJ-LMfire was driven by the PMIP3 suite of eight GCMs for which LGM climate simulations were available. Also provided in this archive is the result of an LPJ-LMfire run that was forced by the average climate of all GCMs (the "GCM-mean" files), and the average of each of the individual LPJ-LMfire runs over the eight LGM scenarios individually (the "LPJ-mean" files). The model simulations are provided that include the influence of human presence on the landscape (the "people" files), and in a "world without humans" scenario (the "natural" files). Finally this archive contains the preindustrial reference simulation with and without human influence ("PI_reference_people" and "PI_reference_nat", respectively). There are therefore 22 netCDF files in this archive: 8 each of LGM simulations with and without people (total 16) and the "GCM mean" simulation (2 files) and the "LPJ mean" aggregate (2 files), and finally the two preindustrial "control" simulations ("PI"), with and without humans (2 files). In addition to the LPJ-LMfire model output (netCDF files), this archive also contains a table of arboreal pollen percent calculated from pollen samples dated to the LGM at sites throughout (lgmAP.txt), and a table containing the location of archaeological sites dated to the LGM (LGM_archaeological_site_locations.txt).
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.