3 resultados para Forecasting Tailings Model

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is commonly understood that the observed decline in precipitation in South-West Australia during the 20th century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation and anthropogenic aerosol emissions - all of which are effective on different spatial and temporal scales. This contribution focusses on the role of rapidly rising aerosol emissions from anthropogenic sources in South-West Australia around 1970. An analysis of historical longterm rainfall data of the Bureau of Meteorology shows that South-West Australia as a whole experienced a gradual decline in precipitation over the 20th century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modelling experiments at a convection-resolving resolution of 3.3km using the Weather and Research Forecasting (WRF) model version 3.6.1 with the aerosol-aware Thompson-Eidhammer microphysics scheme are conducted for the period 1970-1974. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2-9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater South-West Australia and for the sudden drop observed in areas along the West Coast in the 1970s: changing atmospheric circulations, deforestation and anthropogenic aerosol emissions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.