21 resultados para Fluvial Channels
em Publishing Network for Geoscientific
Resumo:
In the neighbourhood of Oobloyah Bay various phenomena ean be eneountered whieh point to a ularge-seale uplift of shorelines, i.e. to an emergence of 200 m. Delta terraces, deltaic fan terraces and glacio-marine sands are regarded by the author as being the most reliable evidence of this. The marine limit documented by glacio-marine sand is to be found at ~170 m a.s.l. Hints of ancient shorelines located at a higher level exist only in the shape of badly preserved raised beaches. They were classified as less reliable records of past sea-levels, due to the lack of marine fossils and/or drift wood, and furthermore because those forms had been strongly influenced by periglacial processes. Deltaic deposits are of more importance in this context. The glacio-marine deltaic sands of several terrace levels contain terrestrial plant remnants which delivered C14dates. Using these dates und the relative elevations of terraces the emergenee of the area investigated could be recorded. This occured in a series of phases (and steps) which were summarized into two periods: an early period of emergenee which took place from at least 25 300 years B.P. to later than 17 340 years B.P. and a later one from at least 12 870 years B.P. up to the present day. The emergence seems to represent a discontinuous but regular sequence of relative sea level movements without intermittent submergence. Since the deltaic fans of the early emergence period were accumulated by sediments through glacio-fluvial channels of an adjacent glacier body the appropriate location of this glacial stage for one of the glaciers delivering meltwater (Nukapingwa Glacier) could be reconstructed. This stage of the glacier appears to belong to a retreating phase of the Mid-Wisconsin (?). The later period of emergence resulted in six rather glacio-marine delta terrace generations at the mouths of the main rivers with glaciofluvial regimen debouching into the Oobloyah Bay. A connection of this emergence with the glacial history of the field area is discussed. If one may rely on the age determinations of land derived plant fossils and their application for the climatic history of the area investigated, it must be concluded that the Heidelberg Valley, to a large extent, was alreaely deglaciated 25 000 years ago. The existence of a "Cockburn"-Phase in the sense of a major readvanee in Late Wisconsin times appears to be doubtful, or has been developed rather weakly.
Resumo:
Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1-12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network. These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel-levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land. The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses. Asymmetrical submarine channel-levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel-levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.
Resumo:
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.
Resumo:
A model is presented for hemipelagic siliciclastic and carbonate sedimentation during the last glacial-interglacial cycle in the Capricorn Channel, southern Great Barrier Reef (GBR). Stable isotope ratios, grainsize, carbonate content and mineralogy were analysed for seven cores in a depth transect from 166 to 2892 m below sea level (mbsl). Results show variations in the flux of terrigenous, neritic and pelagic sediments to the continental slope over the last sea level cycle. During the glacial lowstand terrigenous sediment influenced all the cores down to 2000 mbsl. The percentages of quartz and feldspar in the cores decreased with water depth, while the percentage of clay increased. X-ray diffraction analysis of the glacial lowstand clay mineralogy suggests that the siliciclastic sediment was primarily sourced from the Fitzroy River, which debouched directly into the northwest sector of the Capricorn Channel at this time. The cores also show a decrease in pelagic calcite and an increase in aragonite and high magnesium calcite (HMC) during the glacial. The influx of HMC and aragonite is most likely from reworking of coral reefs exposed on the continental shelf during the glacial, and also from HMC ooids precipitated at the head of the Capricorn Channel at this time. Mass accumulation rates (MARs) are high (13.5 g/cm**/kyr) during the glacial and peak at ~20 g/cm** 3/kyr in the early transgression (16-14 ka BP). MARs then decline with further sea level rise as the Fitzroy River mouth retreats from the edge of the continental shelf after 13.5 ka BP. MARs remain low (4 g/cm**3/kyr) throughout the Holocene highstand. Data for the Holocene highstand indicate there is a reduction in siliciclastic influx to the Capricorn Channel with little quartz and feldspar below 350 mbsl. However, fine-grained fluvial sediments, presumably from the Fitzroy River, were still accumulating on the mid slope down to 2000 mbsl. The proportion of pelagic calcite in the core tops increases with water depth, while HMC decreases, and is present only in trace amounts in cores below 1500 mbsl. The difference in the percentage of HMC in the deeper cores between the glacial and Holocene may reflect differences in supply or deepening of the HMC lysocline during the glacial. Sediment accumulation rates also vary between cores in the Capricorn Channel and do not show the expected exponential decrease with depth. This may be due to intermediate or deep water currents reworking the sediments. It is also possible that present bathymetry data are too sparse to detect the potential role that submarine channels may play in the distribution and accumulation of sediments. Comparison of the Capricorn Channel MARs with those for other mixed carbonate/siliciclastic provinces from the northeast margin of Australia indicates that peak MARs in the early transgression in the Capricorn Channel precede those from the central GBR and south of Fraser Island. The difference in the timing of the carbonate and siliciclastic MAR peaks along the northeast margin is primarily related to differences in the physiography and climate of the provinces. The only common trend in the MARs from the northeast margin of Australia is the near synchronicity of the carbonate and siliciclastic MAR peaks in individual sediment cores, which supports a coeval sedimentation model.
Resumo:
This set of functions allows one to compute the radius of curvature of a river in planform for the purpose of making correlations with other geometric parameters of a channel. The code may also be used to compute the width of a channel.