91 resultados para Flower Abscission
em Publishing Network for Geoscientific
Resumo:
We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.
Resumo:
Frost flowers are ice crystals that grow on refreezing sea ice leads in Polar Regions by wicking brine from the sea ice surface and accumulating vapor phase condensate. These crystals contain high concentrations of mercury (Hg) and are believed to be a source of reactive halogens, but their role in Hg cycling and impact on the fate of Hg deposited during atmospheric mercury depletion events (AMDEs) are not well understood. We collected frost flowers growing on refreezing sea ice near Barrow, Alaska (U.S.A.) during an AMDE in March 2009 and measured Hg concentrations and Hg stable isotope ratios in these samples to determine the origin of Hg associated with the crystals. We observed decreasing Delta199Hg values in the crystals as they grew from new wet frost flowers (mean Delta199Hg = 0.77 ± 0.13 per mil, 1 s.d.) to older dry frost flowers (mean Delta199Hg = 0.10 ± 0.05 per mil, 1 s.d.). Over the same time period, mean Hg concentrations in these samples increased from 131 ± 6 ng/L (1 s.d.) to 180 ± 28 ng/L (1 s.d.). Coupled with a previous study of Hg isotopic fractionation during AMDEs, these results suggest that Hg initially deposited to the local snowpack was subsequently reemitted during photochemical reduction reactions and ultimately accumulated on the frost flowers. As a result of this process, frost flowers may lead to enhanced local retention of Hg deposited during AMDEs and may increase Hg loading to the Arctic Ocean.
Resumo:
This data set contains a time series of plant height measurements (vegetative and reproductive) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In addition, data on species specific plant heights for the main experiment are available from 2002. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Plant height was recorded, generally, twice a year just before biomass harvest (during peak standing biomass in late May and in late August). Methodologies of measuring height have varied somewhat over the years. In earlier year the streched plant height was measured, while in later years the standing height without streching the plant was measured. Vegetative height was measured either as the height of the highest leaf or as the length of the main axis of non-flowering plants. Regenerating height was measured either as the height of the highest flower on a plant or as the height of the main axis of flowering. Sampled plants were either randomly selected in the core area of plots or along transects in defined distances. For details refer to the description of individual years. Starting in 2006, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details in the general description of the Jena Experiment) were sampled. 2. Species specific plant height was recorded two times in 2002: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.
Resumo:
A study of the polarimetric backscattering response of newly formed sea ice types under a large assortment of surface coverage was conducted using a ship-based C-band polarimetric radar system. Polarimetric backscattering results and physical data for 40 stations during the fall freeze-up of 2003, 2006, and 2007 are presented. Analysis of the copolarized correlation coefficient showed its sensitivity to both sea ice thickness and surface coverage and resulted in a statistically significant separation of ice thickness into two regimes: ice less than 6 cm thick and ice greater than 8 cm thick. A case study quantified the backscatter of a layer of snow infiltrated frost flowers on new sea ice, showing that the presence of the old frost flowers can enhance the backscatter by more than 6 dB. Finally, a statistical analysis of a series of temporal-spatial measurements over a visually homogeneous frost-flower-covered ice floe identified temperature as a significant, but not exclusive, factor in the backscattering measurements.
Resumo:
Recent investigations of the southern Gulf of California (22°N) on Leg 65 of the Deep Sea Drilling Project (DSDP) allow important comparisons with drilled sections of ocean crust formed at different spreading rates. During Leg 65 the Glomar Challenger drilled seven basement holes at sites forming a transect across the ridge axis near the Tamayo Fracture Zone. An additional site was drilled on the fracture zone itself, where a small magnetic "diapir" was located. Together with the material from Site 474 (drilled during Leg 64) the cores recovered at these sites are representative of the upper basaltic and sedimentary crust formed since the initial opening of the Gulf. The pattern of magmatic accretion at the ridge axis is conditioned by the moderate to high rate of spreading (~6 cm/y.) and comparatively high sedimentation rates that now characterize the Gulf of California. In terms of spreading rate, this region is intermediate between the "superfast" East Pacific Rise axis to the south (up to 17 cm/y.) and the slow-spreading Mid-Atlantic Ridge (2-4 cm/y.) both of which have been extensively studied by dredging and drilling.
Resumo:
To understand the late Cenozoic glacial history of the Northern Hemisphere, continuous long-term proxy records from climatically sensitive regions must be examined. Ice-rafted debris (IRD) from Ocean Drilling Program (ODP) Site 918, located in the Irminger Basin, is one such record. IRD in marine sediments is a direct indicator of the presence of glacial ice extending to sea level on adjacent landmasses, and, therefore, is an important paleoclimatic signal from the mid- to high latitudes. The IRD record at Site 918 is the first long-term ice-rafting record available for southeast Greenland, a region that may have been a key nucleation area for widespread glaciation during the late Cenozoic (Larsen et al, 1994, doi:10.2973/odp.proc.ir.152.1994). This data report presents the results of coarse sand-size IRD mass accumulation rate (MAR) analyses for Site 918 from the late Miocene through the Pleistocene. In addition, a preliminary analysis of IRD compositions is included. Detailed discussions of the local, regional, and global paleoclimatic implications of this data, and of the companion Site 919 Pleistocene IRD MAR data (Krissek, 1999, doi:10.2973/odp.proc.sr.163.118.1999), are in preparation. Such future work will include comparisons of these IRD MAR data sets to the Site 919 oxygen isotope stratigraphy developed by Flower (1998, doi:10.2973/odp.proc.sr.152.219.1998).