6 resultados para Flotation.
em Publishing Network for Geoscientific
Resumo:
Air-fall volcanic ash and pumice were recovered from 22 intervals in upper Miocene-Pleistocene nannofossil oozes cored in Hole 810C on Shatsky Rise, northwest Pacific. Shatsky Rise is near the eastern limit of ash falls produced by explosive volcanism in arc systems in northern Japan and the Kuriles, more than 1600 km away. Electron probe analyses establish that the ash beds and pumice pebbles are andesitic to rhyolitic in composition, and belong to both tholeiitic and high-alumina lineages similar to tephra from Japanese volcanoes. High-speed winds in the polar-front and subtropical jets are evidently what propelled the ash for such a distance. The pumice arrived by flotation, driven from the same directions by winds, waves, and currents. It is not ice-rafted debris from the north. One thick pumice bed probably was deposited when a large pumice mat passed over Shatsky Rise. Far more abundant ash occurs in sediments cored at DSDP Sites 578 through 580, about 500 km west of Shatsky Rise. Most of the ash and pumice at Shatsky Rise can be correlated with specific ash beds at 1, 2, or all 3 of these sites by interpolating to precisely determined magnetic reversal sequences in the cores. Most of the correlations are to thick ash layers (5.7 +/- 3.0 cm) at one or more sites. These must represent extremely large eruptions that spread ash over very wide areas. Whereas several of the thicker correlative ashes fell from elongate east-trending plumes directed from central Japan, the majority of them - dating from about 2 Ma - came from the North Honshu and Kurile arc systems to the northwest. This direction probably was in response to both long-term and seasonal fluctuations in the location and velocity of the polar-front jet, and to more vigorous winter storm fronts originating over glaciated Siberia.
Resumo:
Basaltic rocks recovered at the Middle America Trench area off Mexico are typical plagioclase-olivine phyric abyssal tholeiites containing less than 0.2 wt.% K2O. Phenocrysts of plagioclase and olivine usually make up the aggregate. Plagioclase phenocrysts are Ca-rich and up to An90. Olivine phenocrysts, which are always attached to plagioclase phenocrysts, are magnesian, Fo88 to Fo89, and contain 0.2 to 0.3 wt. % of NiO. Plagioclase phenocrysts contain numerous glass inclusions with the Mg/Mg+Fe atomic ratio of 0.70 to 0.73, which is distinctly higher than the same ratio of the bulk rock (0.62-0.63). Olivine of Fo88 to Fo89 is equilibrated with the liquid with an Mg/Mg+Fe atomic ratio of about 0.7, assuming the KDMg-Fe between liquid and olivine of 0.3. Small droplets of glass within glass inclusions in plagioclase are more enriched in K2O and volatiles than the host glass. This enrichment may have been caused by the extraction of Al2O3 as plagioclase from the trapped liquid and implies its immiscibility. Aggregates of plagioclase with small amounts of olivine may have been floated from more primitive magma with an Mg/Mg+Fe atomic ratio of about 0.7, judging from the chemical characteristics mentioned above. Flotation must have occurred at relatively high pressure. Large crystals of plagioclase and smaller crystals of olivine are xenocryst rather than phenocryst. Parental magma of Leg 66 basalt was high-MgO olivine tholeiite.
Resumo:
Sea-ice diatoms are known to accumulate in large aggregates in and under the sea ice including melt ponds. In the Arctic, they can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not yet well understood, and may vary in relation to the fate of the Arctic sea-ice cover. To elucidate the mechanism controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Dense, spherical aggregates composed mainly of pennate diatoms, and filamentous aggregates formed by Melosira arctica were found in different degradation stages, with carbon to Chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Fresh sub-ice algal aggregate densities ranged between 1 and 17 aggregates/m**2, corresponding to a net primary production of 0.4-40 mg C/m**2/d, contributing 3-80% of total biomass and up to 94% of total production at a local scale. A key factor controlling buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and flotation by gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data was used to evaluate the factors regulating the distribution and importance of the Arctic algal aggregates as carbon source for pelagic and benthic communities.
Resumo:
Fifty samples of Roman time soil preserved under the thick ash layer of the A.D.79 eruption of Mt Vesuvius were studied by pollen analysis: 33 samples from a former vineyard surrounding a Villa Rustica at Boscoreale (excavation site 40 x 50 m), 13 samples taken along the 60 m long swimming pool in the sculpture garden of the Villa of Poppaea at Oplontis, and four samples from the formal garden (12.4 x 17.5 m) of the House of the Gold Bracelet in Pompeii. To avoid contamination with modern pollen all samples were taken immediately after uncovering a new portion of the A.D. 79 soil. For comparison also samples of modern Italian soils were studied. Using standard methods for pollen preparation the pollen content of 15 of the archaeological samples proved to be too little to reach a pollen sum of more than 100 grains. The pollen spectra of these samples are not shown in the pollen tables. (Flotation with a sodium tungstate solution, Na2WO4, D = 2.05, following treatment with HCl and NaOH would probably have given a somewhat better result. This method was, however, not available as too expensive at that time.) Although the archaeological samples were taken a few meters apart their pollen values differ very much from one sample to the other. E.g., at Boscoreale (SW quarter). the pollen values of Pinus range from 1.5 to 54.5% resp. from 1 to 244 pine pollen grains per 1 gram of soil, the extremes even found under pine trees. Vitis pollen was present in 7 of the 11 vineyard samples from Boscoreale (NE quarter) only. Although a maximum of 21.7% is reached, the values of Vitis are mostly below 1.5%. Even the values of common weeds differ very much, not only at Boscoreale, but also at the other two sites. The pollen concentration values show similar variations: 3 to 3053 grains and spores were found in 1 g of soil. The mean value (290) is much less than the number of pollen grains, which would fall on 1 cm2 of soil surface during one year. In contrast, the pollen and spore concentrations of the recent soil samples, treated in exactly the same manner, range from 9313 to almost 80000 grains per 1 g of soil. Evidently most of the Roman time pollen has disappeared since its deposition, the reasons not being clear. Not even species which are known to have been cultivated in the garden of Oplontis, like Citrus and Nerium, plant species with easily distinguishable pollen grains, could be traced by pollen analysis. The loss of most of the pollen grains originally contained in the soil prohibits any detailed interpretation of the Pompeian pollen data. The pollen counts merely name plant species which grew in the region, but not necessarily on the excavated plots.
Resumo:
Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.
Resumo:
The lamination and burrowing patterns in 17 box cores were analyzed with the aid of X-ray photographs and thin sections. A standardized method of log plotting made statistical analysis of the data possible. Several 'structure types' were established, although it was realized that the boundaries are purely arbitrary divisions in what can sometimes be a continuous sequence. In the transition zone between marginal sand facies and fine-grained basin facies, muddy sediment is found which contains particularly well differentiated, alternating laminae. This zone is also characterized by layers rich in plant remains. The alternation of laminae shows a high degree of statistical scattering. Even though a small degree of cyclic periodicity could be defined, it was impossible to correlate individual layers from core to core across the bay. However, through a statistical handling of the plots, zones could be separated on the basis of the number of sand layers they contained. These more or minder sandy zones clarified the bottom reflections seen in the records of the echograph from the area. The manner of facies change across the bay, suggests that no strong bottom currents are effective in the Eckernförde Bay. The marked asymmetry between the north and south flanks of the profile can be attributed to the stronger action of waves on the more exposed areas. Grain size analyses were made from the more homogeneous units found in a core from the transition-facies zone. The results indicate that the most pronounced differences between layers appear in the silt range, and although the differences are slight, they are statistically significant. Layers rich in plant remains were wet-sieved in order to separate the plant detritus. This was than analyzed in a sediment settling balance and found to be hydrodynamically equivalent to a well-sorted, finegrained sand. A special, rhythmic cross-bedding type with dimensions in the millimeter range, has been named 'Crypto-cross-lamination' and is thought to represent rapid sedimentation in an area where only very weak bottom currents are present. It is found only in the deepest part of the basin. Relatively large sand grains, scattered within layers of clayey-silty matrix, seem to be transported by flotation. Thin section examination showed that the inner part of Eckernförder Bay carbonate grains (e. g. Foraminifera shells) were preserved throughout the cores, while in the outer part of the bay they were not present. Well defined tracks and burrows are relatively rare in all of the facies in comparision to the generally strongly developed deformation burrowing. The application of special measures for the deformation burrowing allowed to plot their intensity in profile for each core. A degree of regularity could be found in these burrowing intensity plots, with higher values appearing in the sandy facies, but with no clear differences between sand and silt layers in the transition facies. Small sections in the profiles of the deepest part of the bay show no bioturbation at all.