11 resultados para Fines and recoveries

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar-type helium (He) and neon (Ne) in the Earth's mantle were suggested to be the result of solarwind loaded extraterrestrial dust that accumulated in deep-sea sediments and was subducted into the Earth's mantle. To obtain additional constraints on this hypothesis, we analysed He, Ne and argon (Ar) in high pressure-low temperature metamorphic rocks representing equivalents of former pelagic clays and cherts from Andros (Cyclades, Greece) and Laytonville (California, USA). While the metasediments contain significant amounts of 4He, 21Ne and 40Ar due to U, Th and K decay, no solar-type primordial noble gases were observed. Most of these were obviously lost during metamorphism preceding 30 km subduction depth. We also analysed magnetic fines from two Pacific ODP drillcore samples, which contain solar-type He and Ne dominated by solar energetic particles (SEP). The existing noble gas isotope data of deep-sea floor magnetic fines and interplanetary dust particles demonstrate that a considerable fraction of the extraterrestrial dust reaching the Earth has lost solar wind (SW) ions implanted at low energies, leading to a preferential occurrence of deeply implanted SEP He and Ne, fractionated He/Ne ratios and measurable traces of spallogenic isotopes. This effect is most probably caused by larger particles, as these suffer more severe atmospheric entry heating and surface ablation. Only sufficiently fine-grained dust may retain the original unfractionated solar composition that is characteristic for the Earth's mantle He and Ne. Hence, in addition to the problem of metamorphic loss of solar noble gases during subduction, the isotopic and elemental fractionation during atmospheric entry heating is a further restriction for possible subduction hypotheses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In mixed sediment beds, erosion resistance can change relative to that of beds composed of a uniform sediment because of varying textural and/or other grain-size parameters, with effects on pore water flow that are difficult to quantify by means of analogue techniques. To overcome this difficulty, a three-dimensional numerical model was developed using a finite difference method (FDM) flow model coupled with a distinct element method (DEM) particle model. The main aim was to investigate, at a high spatial resolution, the physical processes occurring during the initiation of motion of single grains at the sediment-water interface and in the shallow subsurface of simplified sediment beds under different flow velocities. Increasing proportions of very fine sand (D50=0.08 mm) were mixed into a coarse sand matrix (D50=0.6 mm) to simulate mixed sediment beds, starting with a pure coarse sand bed in experiment 1 (0 wt% fines), and proceeding through experiment 2 (6.5 wt% fines), experiment 3 (10.5 wt% fines), and experiment 4 (28.7 wt% fines). All mixed beds were tested for their erosion behavior at predefined flow velocities varying in the range of U 1-5=10-30 cm/s. The experiments show that, with increasing fine content, the smaller particles increasingly fill the spaces between the larger particles. As a consequence, pore water inflow into the sediment is increasingly blocked, i.e., there is a decrease in pore water flow velocity and, hence, in the flow momentum available to entrain particles. These findings are portrayed in a new conceptual model of enhanced sediment bed stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay mineral and bulk chemical (Si, Al, K, Mg, Sr, La, Ce, Nd) analyses of terrigenous surface sediments on the Siberian-Arctic shelf indicate that there are five regions with distinct, or endmember, sedimentary compositions. The formation of these geochemical endmembers is controlled by sediment provenance and grain size sorting. (1) The shale endmember (Al, K and REE rich sediment) is eroded from fine-grained marine sedimentary rocks of the Verkhoyansk Mountains and Kolyma-Omolon superterrain, and discharged to the shelf by the Lena, Yana, Indigirka and Kolyma Rivers. (2) The basalt endmember (Mg rich) originates from NE Siberia's Okhotsk-Chukotsk volcanic belt and Bering Strait inflow, and is prevalent in Chukchi Sea Sediments. Concentrations of the volcanically derived clay mineral smectite are elevated in Chukchi fine-fraction sediments, corroborating the conclusion that Chukchi sediments are volcanic in origin. (3) The mature sandstone endmember (Si rich) is found proximal to Wrangel Island and sections of the Chukchi Sea's Siberian coast and is derived from the sedimentary Chukotka terrain that comprises these landmasses. (4) The immature sandstone endmember (Sr rich) is abundant in the New Siberian Island region and reflects inputs from sedimentary rocks that comprise the islands. (5) The immature sandstone endmember is also prevalent in the western Laptev Sea, where it is eroded from sedimentary deposits blanketing the Siberian platform that are compositionally similar to those on the New Siberian Islands. Western Laptev can be distinguished from New Siberian Island region sediments by their comparatively elevated smectite concentrations and the presence of the basalt endmember, which indicate Siberian platform flood basalts are also a source of western Laptev sediments. In certain locations grain size sorting noticeably affects shelf sediment chemistry. (1) Erosion of fines by currents and sediment ice rafting contributes to the formation of the coarse-grained sandstone endmembers. (2) Bathymetrically controlled grain size sorting, in which fines preferentially accumulate offshore in deeper, less energetic water, helps distribute the fine-grained shale and basalt endmembers. An important implication of these results is that the observed sedimentary geochemical endmembers provide new markers of sediment provenance, which can be used to track sediment transport, ice-rafted debris dispersal or the movement of particle-reactive contaminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dissolved Ca2+, Sr2+, Mg2+, SO4[2-], and alkalinity were measured in pore waters squeezed from sediments taken from ODP Holes 626C and 626D in the Florida Straits; Holes 627A and 627B, 628A, and 630A and 630C north of Little Bahama Bank; Holes 631 A, 632A and 632B, and 633A in Exuma Sound; and Holes 634A and 635A and 635B in Northeast Providence Channel. These data are compared with the mineralogy and strontium content of the sediments from which the waters were squeezed. Contrasts in the geochemical profiles suggest that significantly different processes govern pore-water signatures at each group of sites. In Little Bahama Bank, strong positive Ca2+ gradients are correlated with weak negative Mg2+ profiles. These trends are analogous to those seen at DSDP sites where carbonate deposits immediately overlie mafic basement, but as the depth to basement may be in excess of 5000 m, we suggest that diffusion gradients are initiated by an underlying sedimentary unit. In contrast, Ca2+ and Mg2+ gradients in Exuma Sound are not developed to any appreciable extent over similar thicknesses of sediment. We suggest that the pore-water chemistry in these deposits is principally controlled by diagenetic reactions occurring within each sequence. The location and extent of carbonate diagenesis can be estimated from dissolved Sr2+ profiles. In Little Bahama Bank and Exuma Sound, Sr2+ concentrations reach a maximum value of between 700 and 1000 µmol/L. Although the depths at which these concentrations are achieved are different for the two areas, the corresponding age of the sediment at the dissolved Sr2+ maximum is similar. Consequently, the diffusive flux of Sr2+ and the calculated rates of recrystallization in the two areas are likewise of a similar magnitude. The rates of recrystallization we calculate are lower than those found in some DSDP pelagic sites. As the waters throughout most of the holes are saturated with respect to SrSO4, celestite precipitation may cause erroneously low Sr2+ production rates and, consequently, low calculated rates of recrystallization. We therefore encourage only the discriminate use of Sr2+ profiles in the quantification of diagenetic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous structural features occur in the Leg 128 cores from the Japan Sea. They include (1) gravity-induced structures such as slump folds, (2) dewatering structures comprising several sets of veins, and (3) larger faults and veins developed in the volcanic basement of the Yamato Basin as well as in the sedimentary rocks of the Oki Ridge and Kita-Yamato Trough. Gravity-induced structures, mainly slumps and associated faults, suggest the existence of paleoslopes and the dominance of gravitational tectonics during the early and middle Miocene, at the Pliocene/Pleistocene boundary, and during the Quaternary. Several types of mud-filled veins having various shapes were observed. These are especially abundant in the middle Miocene siliceous claystones and porcellanites from the Kita-Yamato Trough. They have been interpreted as dewatering conduits that formed preferentially in highly porous, water-saturated diatomaceous muds on a slope, because of episodic loss of sediment strength, collapse of the sediment framework, and consequent fluid migration. The central part of the vein serves once as a fluid conduit, whereas the transition between conduit-controlled and intergranular flow occurs at the branching extremities, with concentration of fines. The likely trigger responsible for the strength loss is seismic activity. Development of these veins, spatially and chronologically linked to small normal microfaults, implies an extensional regime having layer-parallel extension and a local bedding-parallel shear couple, probably the result of gravitational gliding. The brittle fractures found in Yamato Basin basement Hole 794D cores comprise joints, faults, and veins filled with chlorite-saponite, saponite, and calcite. They suggest a likely transpressive to transtensional regime around the early Miocene/ middle Miocene boundary, with a north-northeast-south-southwest compression alternating with a west-northwest-eastsoutheast extension. The faults from Site 799 cores on the Yamato Rise exhibit a prominent early Miocene-middle Miocene extensional environment, a late Miocene-early Pliocene phase of normal and strike-slip faulting, and a final phase that began during the latest Pliocene. Site 798, on the Oki Ridge, reveals faults that recorded a consistent extensional tectonic regime from Pliocene to the Holocene. These data support the pull-apart kinematic model for early Miocene-middle Miocene time, as regarding the stress regime deduced from the Yamato Basin basement fractures. The recent compression known in the eastern margin of the Japan Sea was not documented by compressive structures at any site. The late Miocene-early Pliocene faulting phase corresponds to a major and general reorganization of the stress distribution in the arc area. Evidence for rapid and main subsidence and synsedimentary extension of the Yamato Basin and Yamato Rise areas between 20 and 15 Ma, and the concomitant rotation of southwest Japan, raise the question of links between this opening and the Shimanto Belt collision in southwest Japan, between the arc and the Philippine Sea Plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During ODP Leg 124, late middle Eocene to Quaternary sediment sequences were recovered from 13 holes drilled at five sites in the Celebes and Sulu basins. Paleomagnetic measurements and biostratigraphic studies using calcareous nannofossils, planktonic and benthic foraminifers, radiolarians, and diatoms were completed and summarized here. Two Neogene sediment sections recovered in the Sulu Basin yielded excellent core recoveries and magnetic reversal records, allowing direct magnetobiostratigraphic correlations for the Pliocene and Quaternary at Site 768 and for the middle Miocene to Quaternary at Site 769. The interpolated ages of biohorizons are not consistent between sites and only a few of them are in good agreement with previous calibrations. The differences may be the results of redeposition by turbidity currents and selective dissolution of key fossils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50 = 55 µm) and sand (D50 = 300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment bed. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) "the layering experiment": in which a sandy bed was covered by a thin layer of silt of varying thickness (0.2 - 3 mm; 0.5 - 3.7 wt %, dry weight in a layer 10 cm deep); and (2) "the mixing experiment" where the bed was composed of sand homogeneously mixed with small amounts of silt (0.07 - 0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment bed (or the underlying sand bed in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed bed, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment bed of 10 cm thickness). In the case of a mixed sediment bed, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the bed. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand bed by pore-space plugging and reducing the inflow in the bed, and hence increases the bed stability. Measurements of hydraulic conductivity on similar bed assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered bed and by up to 70% in the case of a mixed bed.