34 resultados para Filters and filtration.
em Publishing Network for Geoscientific
Resumo:
The Sesame dataset contains mesozooplankton data collected during April 2008 in the Levantine Basin (between 33.20 and 36.50 N latitude and between 30.99 and 31.008 E longitude). Mesozooplankton samples were collected by using a WP-2 closing net with 200 µm mesh size during day hours (07:00-18:00). Samples were taken from 0-50, 50-100, 100-200 m layers at 5 stations in Levantine Basin The dataset includes samples analyzed for mesozooplankton species composition, abundance and total mesozooplankton biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling biomass was measured by weighing filters and then determined by sampling volume. The samples were sieved sequentially through meshes of 500 and 200 micron to separate the mesozooplankton into size fractions. The entire sample (1/2) or an aliquot of the taxon-specific mesozooplankton abundance and the total abundance of the mesozooplankton were was analyzed under the binocular microscope. Minimum 500 individuals of mesozooplankton were identified and numerated at higher taxonomic level. Taxonomic identification was done at the METU- Institute of Marine Sciences by Alexandra Gubanova,Tuba Terbiyik using the relevant taxonomic literatures. Mesozooplankton abundance and biomass were estimated by Zahit Uysal and Yesim Ak.
Chlorophyll-a in gut from Microsetella norvegica and Oncaea collected during James Cook cruise JC087
Resumo:
Gut chlorophyll of Microsetella norvegica and Oncaea spp. was measured daily at the PAP site from 8th to 14th of June, 2013. Copepods were collected using a WP2 -type net with a mesh size of 50 µm. Immediately after, 40-70 adults and late copepodites of each species (with 2-3 replicate samples) were washed in filtered sea water, placed on CF/F filters and extracted in acetone. Chlorophyll-a on filters was analysed using standard methods.
Resumo:
The microbial oxidation of methane controls the emission of the greenhouse gas methane from the ocean floor. However, some seabed structures such as mud volcanoes have leaky microbial methane filters and can be important sources of methane. We investigated the disturbance and recovery of a methanotrophic mud volcano microbiome (Håkon Mosby mud volcano, 1250 m water depth), to assess time scales of community succession and function in the natural deep-sea environment. We analyzed 10 surface and 5 subsurface sediment samples across HMMV mud flows from most recently discharged subsurface muds towards old consolidated muds as well as one reference site (REF) located approximately 0.5 km outside of the HMMV. Surface samples were obtained in 2003, 2009 and 2010. The surface of the new mud flows at the geographical center was sampled in 2009 and 2010. Around 100 m south of the center, we sampled more consolidated aged muds in 2003 and 2010. Old mud flows were sampled around 300 m southeast and 100 m north of the geographical center in 2003, 2009 and 2010. Surface sediment samples (0-20 cm) were recovered either by TV-guided Multicorer or by push cores using the remotely operated vehicle Quest (Marum, University Bremen). Subsurface sediments of all zones (>2 m below sea floor) were obtained in 2003 by gravity corer. After recovery, sediments were immediately subsampled in a refrigerated container (0°C) and further processed for biogeochemical analyses or preserved at -20°C for later DNA analyses. Our study show that freshly erupted muds hosted heterotrophic deep subsurface communities, which were replaced by surface communities within a few years of exposure. Aerobic methanotrophy was established at the top surface layer within less than a year, followed by anaerobic methanotrophy, sulfate reduction and finally thiotrophy. Our data indicate that it takes decades in cold environments before efficient methanotrophic communities establish to control methane emission. The observed succession provides insights to the response time of complex deep-sea communities to seafloor disturbances.
Resumo:
Organisms inhabiting coastal waters naturally experience diel and seasonal physico-chemical variations. According to various assumptions, coastal species are either considered to be highly tolerant to environmental changes or, conversely, living at the thresholds of their physiological performance. Therefore, these species are either more resistant or more sensitive, respectively, to ocean acidification and warming. Here, we focused on Crepidula fornicata, an invasive gastropod that colonized bays and estuaries on northwestern European coasts during the 20th century. Small (<3 cm in length) and large (>4.5 cm in length), sexually mature individuals of C. fornicata were raised for 6 months in three different pCO2 conditions (390 µatm, 750 µatm, and 1400 µatm) at four successive temperature levels (10°C, 13°C, 16°C, and 19°C). At each temperature level and in each pCO2 condition, we assessed the physiological rates of respiration, ammonia excretion, filtration and calcification on small and large individuals. Results show that, in general, temperature positively influenced respiration, excretion and filtration rates in both small and large individuals. Conversely, increasing pCO2 negatively affected calcification rates, leading to net dissolution in the most drastic pCO2 condition (1400 µatm) but did not affect the other physiological rates. Overall, our results indicate that C. fornicata can tolerate ocean acidification, particularly in the intermediate pCO2 scenario. Moreover, in this eurythermal species, moderate warming may play a buffering role in the future responses of organisms to ocean acidification.
Resumo:
Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.
Resumo:
The Deep Convection cruise repeatedly sampled two locations in the North Atlantic, sited in the Iceland and Norwegian Basins, onboard the RV Meteor (19 March - 2 May 2012). Samples were collected from multiple casts of a conductivity-temperature-depth (CTD) - Niskin rosette at each station. Water samples for primary production rates, community structure, chlorophyll a [Chl a], calcite [PIC], particulate organic carbon [POC] and biogenic silicic acid [BSi] were collected from predawn casts from six light depths (55%, 20%, 14%, 7%, 5% and 1% of incident PAR). Additional samples for community structure and ancillary parameters were collected from a second cast. Carbon fixation rates were determined using the 13C stable isotope method. Water samples for diatom and micro zooplankton counts, collected from the predawn casts, were preserved with acidic Lugol's solution (2% final solution) and counted using an inverted light microscope. Water samples for coccolithophore counts were collected onto cellulose nitrate filters and counted using polarising light microscopy. Water samples for Chl a analysis were filtered onto MF300 and polycarbonate filters and extracted in 90% acetone. PIC and BSi samples were filtered onto polycarbonate filters and analysed using an inductively coupled plasma emission optical spectrometer and a SEAL QuAAtro autoanalyser respectively.
Resumo:
Reduction in global ocean pH due to the uptake of increased atmospheric CO2 is expected to negatively affect calcifying organisms, including the planktonic larval stages of many marine invertebrates. Planktonic larvae play crucial roles in the benthic-pelagic life cycle of marine organisms by connecting and sustaining existing populations and colonizing new habitats. Calcified larvae are typically denser than seawater and rely on swimming to navigate vertically structured water columns. Larval sand dollars Dendraster excentricus have calcified skeletal rods supporting their bodies, and propel themselves with ciliated bands looped around projections called arms. Ciliated bands are also used in food capture, and filtration rate is correlated with band length. As a result, swimming and feeding performance are highly sensitive to morphological changes. When reared at an elevated PCO2 level (1000 ppm), larval sand dollars developed significantly narrower bodies at four and six-arm stages. Morphological changes also varied between four observed maternal lineages, suggesting within-population variation in sensitivity to changes in PCO2 level. Despite these morphological changes, PCO2 concentration alone had no significant effect on swimming speeds. However, acidified larvae had significantly smaller larval stomachs and bodies, suggesting reduced feeding performance. Adjustments to larval morphologies in response to ocean acidification may prioritize swimming over feeding, implying that negative consequences of ocean acidification are carried over to later developmental stages.
Resumo:
The Black Sea is the unique ecosystem with lots of geological, ecological and biological features. For full understanding of these systems it is very important to investigate and indentify the microbial communities, including how the environment shapes its genome. Despite the data obtained by different investigations about the certain groups of microorganisms, isolated as pure cultures on nutritive mediums the total microbial metagenome hasn't been analysed. During July 2014 the 9 sites along the coast in Odessa region were selected for sampling of surface marine water, isolation of total DNA and further sequence 16S rRNA analysis. The water sampling and filtration were accompanied by measurement of metadata for evaluation of how the environment influences the present microbial biodiversity.
Resumo:
The Sesame dataset contains mesozooplankton data collected during April 2008 in the Marmara Sea (between 40°15' - 34°00N latitude and 19°00 - 23°10'E longitude). Sampling was always performed in day hours (07:00-18:00 local time). Samples were taken at 6 stations in the Marmara Sea. Mesozooplankton samples were collected by using a WP-2 closing net with 200 µm mesh size. Sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) to be successively analyzed in the laboratory for species composition, abundance and total biomass. The algal organisms materials were then seperated from the mesozooplankton subsample at the dissecting microscope in the laboratory because of the contamination of the net samples with large-sized algae and mucilaginous organic matters. Afterwards, each samples were filtered on GF/C (pre combusted and weighed) for biomass measurements for dry weight. The dataset includes samples analyzed for mesozooplankton species composition, abundance and total mesozooplankton biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling biomass was measured by weighing filters and then determined according to sampling volume. 1/2 sample or an aliquot was analyzed under the binocular microscope. Copepod species were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Taxonomic identification was done at the METU-Institute of Marine Sciences by Tuba Terbiyik using the relevant taxonomic literatures.
Resumo:
Net Primary Production was measured using the 14**C uptake method with minor modifications. Melt pond samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).
Resumo:
Net Primary Production was measured using the 14**C uptake method with minor modifications. Seawater samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).
Resumo:
Net Primary Production was measured using the 14**C uptake method with minor modifications. Melted sea ice samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).
Resumo:
A total of 773 samples were analysed for dissolved manganese (Mn) in the Arctic Ocean aboard R.V. Polarstern during expedition ARK XXII/2 from 28 July until 07 October 2007 from Tromsø (Norway) to Bremerhaven. Concentrations of Mn were elevated in the surface layer with concentrations of up to 6 nM over the deep Basins and over 20 nM in the Laptev Sea. The general distribution of Mn through the water column is consistent with previous studies, but there are differences in the absolute concentrations that are most likely related to differences in sample area, sampling and filtration. The elevated concentrations of Mn in the surface layer are related to fresh water input. This was visible in the strong negative correlations observed between dissolved Mn and salinity. The correlation between Mn and salinity and the correlation between Mn and the quasi conservative trace water mass tracer PO4*, showed fluvial and melt water input and the Pacific and Atlantic origin of the surface waters. A large portion of the Mn delivered by the Arctic rivers is removed in the shelf seas and does not pass into the central basins. Most likely a benthic flux is at the origin of the elevated concentrations of Mn near the sediments in the Barents and Kara Seas. These elevated concentrations of Mn apparently affected the deep basins as well, as maxima in the concentrations of Mn were observed that corresponded with lowered transmission over the continental slope. A maximum in the concentration of Mn in the deep basin corresponded with anomalies in light transmission, potential temperature and dissolved iron, confirming the hydrothermal origin. The hydrothermal plume was observed throughout the Nansen Basin and over the deep Gakkel Ridge around 2500 m depth and a smaller plume was observed around 3200 m. The concentration of Mn at the Mn maximum around 2500 m depth decreased exponentially, consistent with a first order scavenging model. The concentrations of Mn were extremely low in the deep Makarov Basin (~0.05 nM) and slightly higher in the Eurasian Basin (~0.1 nM) outside the influence of the hydrothermal activity.