44 resultados para Field Intensity

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A combination of high sedimentation rates and high concentrations of magnetic grains in cores from Ocean Drilling Program Leg 126 resulted in the recovery of detailed direction and intensity records of the Brunhes/Matuyama geomagnetic polarity reversal. Virtual geomagnetic poles (VGPs) computed from azimuthally oriented samples taken from the cores of Hole 792A in the western Izu-Bonin forearc basin reveal that the geomagnetic pole persisted at moderate to high southern latitudes for several thousand years before a rapid migration to northern latitudes. Alternating-field demagnetization behavior, as well as NRM, NRM/ARM, and NRM/IRM intensities for samples from this same interval, and the NRM/IRM intensities derived from unoriented core samples from Holes 790C and 791B, drilled in the ~100-km distant Sumisu Rift, all suggest that the dipole field oscillated widely in intensity before the reversal. The fast polarity change occurred at the low point of an ~1100-yr field intensity cycle. This "reversal cycle" immediately followed earlier intensity cycles whose peaks rivaled or surpassed the normalized intensities of discrete samples from well above and below the reversal interval; furthermore, the troughs indicate a much diminished dipole field at their nadir.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fact that the natural remanent magnetization (NRM) intensity of mid-oceanic-ridge basalt (MORB) samples shows systematic variations as a function of age has long been recognized: maximum as well as average intensities are generally high for very young samples, falling off rather rapidly to less than half the recent values in samples between 10 and 30 Ma, whereupon they slowly rise in the early Tertiary and Cretaceous to values that approach those of the very young samples. NRM intensities measured in this study follow the same trends as those observed in previous publications. In this study, we take a statistical approach and examine whether this pattern can be explained by variations in one or more of all previously proposed mechanisms: chemical composition of the magnetic minerals, abundance of these magnetization carriers, vectorial superposition of parallel or antiparallel components of magnetization, magnetic grain or domain size patterns, low-temperature oxidation to titanomaghemite, or geomagnetic field behavior. We find that the samples do not show any compositional, petrological, rock-magnetic, or paleomagnetic patterns that can explain the trends. Geomagnetic field intensity is the only effect that cannot be directly tested on the same samples, but it shows a similar pattern as our measured NRM intensities. We therefore conclude that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of DSDP Leg 73 was to obtain high-quality records of major paleooceanographic events in the South Atlantic. This was achieved by coring six sites on the African plate. The sediments thus recovered span the Cenozoic and five of the six sites proved ideally suited for magnetostratigraphic analysis. The results presented in this paper and elsewhere in this volume constitute the first opportunity to extend the direct correlation of the magnetostratigraphic and biostratigraphic time-scales into the Paleogene in deep-sea cores. The magnetostratigraphic analyses from DSDP Leg 73 sediments are presented in this paper. The correlation of the magnetostratigraphy to the magnetic polarity time-scale provides tight age-depth control for the five sites analyzed, allowing the accurate calculation of sediment accumulation rates. The data presented here represent a remarkable record of the fine-scale polarity history of the Earth's magnetic field. These data place constraints on the interpretation of smallscale marine magnetic anomalies which are modelled equally effectively by field intensity fluctuations as polarity reversals. At least some of the "tiny wiggles" correspond to very short polarity units in the magnetostratigraphic record. By assuming an axial geocentric dipole, the inclination of the time-averaged magnetic field recorded in the sediments can be used to calculate the paleolatitude at which the sediments were deposited. Combining the age and average inclination information available from the magnetostratigraphy, we present paleolatitudes versus time for the Leg 73 drill sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on discrete samples, we report new high-resolution records of the ~185 kyr Iceland Basin (IB) geomagnetic excursion from Ocean Drilling Project (ODP) Site 1063 on the Bermuda Rise (sedimentation rate 32 cm/kyr) and from ODP Site 983 in the far North Atlantic (sedimentation rate 18 cm/kyr). Two records from Holes 1063A and 1063B are very consistent, and provide the highest resolution of the detailed field behaviour during the IB excursion obtained so far. Inclination records from Holes 983B and 983C in the far North Atlantic are also very consistent, whereas declination anomalies deviate more notably. The pseudo-Thellier (PT) technique was applied along with more conventional palaeointensity proxies (NRM/ARM and NRM/kappa) to recover relative palaeointensity (RPI) estimates from Hole 1063A and Hole 983B. As expected, these proxies indicate that the field intensity generally dropped at both sites during the IB excursion, but also that the history of RPI from the two sites is different. VGPs from Site 1063 indicate that the field at this location experienced some stop-and-go behaviour between patches of intense vertical flux over North America and the tip of South America, areas which coincide fairly well with patches of preferred transitional VGP clustering from reversals and zones of high seismic velocity in the lower mantle. Changes in RPI at this location were generally gradual, possibly due to the proximity of these flux patches, and the first period of VGP-clustering over North America was accompanied by a conspicuous increase in RPI. VGPs from Site 983 track along a different path, and the associated RPI changes are very abrupt and completely synchronous with the onset and termination of the excursion. The differing VGP paths from Sites 1063 and 983 indicate that the global field structure during the IB excursion was not dominated by a single dipole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Holocene records documenting variations in direction and intensity of the geomagnetic field during the last about seven and a half millennia are presented for Northwest Africa. High resolution paleomagnetic analyses of two marine sediment sequences recovered from around 900 meter water depth on the upper continental slope off Cape Ghir (30°51'N, 10°16'W) were supplemented by magnetic measurements characterizing composition, concentration, grain size and coercivity of the magnetic mineral assemblage. Age control for the high sedimentation rate deposits (~60 cm/kyr) was established by AMS radiocarbon dates. The natural remanent magnetization (NRM) is very predominantly carried by a fine grained, mostly single domain (titano-)magnetite fraction allowing the reliable definition of stable NRM inclinations and declinations from alternating field demagnetization and principal component analysis. Predictions of the Korte and Constable (2005) geomagnetic field model CALS7K.2 for the study area are in fair agreement with the Holocene directional records for the most parts, yet noticeable differences exist in some intervals. The magnetic mineral inventory of the sediments reveals various climate controlled variations, specifically in concentration and grain size. A very strong impact had the mid-Holocene environmental change from humid to arid conditions on the African continent which also clearly affects relative paleointensity (RPI) estimates based on different remanence normalizers. To overcome this problem the pseudo-Thellier RPI technique has been applied. The results represent the first Holocene record of Earth's magnetic field intensity variations in the NW Africa region. It displays long term trends similar to those of model predictions, but also conspicuous millennium scale differences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mechanism had been recently proposed to show how an impact event can trigger a geomagnetic polarity reversal by means of rapid climate cooling. We test the proposed mechanism by examining the record from two high sedimentation rate (8-11 cm/kyr) deep-sea sediment cores (ODP Sites 767 and 769) from marginal seas of the Indonesian archipelago, which record the Australasian impact with well-defined microtektite layers, the Brunhes-Matuyama polarity reversal with strong and stable remanent magnetizations, and global climate with oxygen isotope variations in planktonic foraminifera. Both ODP cores show the impact to have preceded the reversal of magnetic field directions by about 12 kyr. Both records indicate that the field intensity was increasing near the time of impact and that it continued to increase for about 4 kyr afterwards. Furthermore, the oxygen isotope record available from sediments at ODP Site 769 shows no indication of discernible climate cooling following the impact: the microtektite event occurred in the later part of glacial Stage 20 and was followed by a smooth warming trend to interglacial Stage 19. Thus the detailed chronology does not support the previously proposed model which would predict that a decrease in geomagnetic field intensity resulted from a minor glaciation following the impact event. We conclude that the evidence for a causal link between impacts and geomagnetic reversals remains insufficient to demonstrate a physical connection.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador: