5 resultados para Feed-water.

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lipid and organic nitrogen isotopic (delta15N) compositions of two common deep-water corals (Lophelia pertusa and Madrepora oculata) collected from selected locations of the NE Atlantic are compared to the composition of suspended particulate organic matter, in order to determine their principle food source. Initial results suggest that they may feed primarily on zooplankton. This is based on the increased abundances of mono-unsaturated fatty acids and alcohols and the different ratios of the polyunsaturated fatty acids, 22:6/20:5 of the corals when compared to those of the suspended particulate organic matter. There is enrichment in L. pertusa of mono-unsaturated fatty acids and of delta15N relative to M. oculata. It is unclear whether this reflects different feeding strategies or assimilation/storage efficiencies of zooplankton tissue or different metabolism in the two coral species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80 % of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the use of benthic foraminifera as a means to document ancient methane release, we determined the stable isotopic composition of tests of live (Rose Bengal stained) and dead specimens of epibenthic Fontbotia wuellerstorfi, preferentially used in paleoceanographic reconstructions, and of endobenthic high-latitude Cassidulina neoteretis and Cassidulina reniforme from a cold methane-venting seep off northern Norway. We collected foraminiferal tests from three push cores and nine multiple cores obtained with a remotely operated vehicle and a video-guided multiple corer, respectively. All sampled sites except one control site are situated at the Håkon Mosby mud volcano (HMMV) on the Barents Sea continental slope in 1250 m water depth. At the HMMV in areas densely populated by pogonophoran tube worms, d13C values of cytoplasm-containing epibenthic F. wuellerstorfi are by up to 4.4 per mil lower than at control site, thus representing the lowest values hitherto reported for this species. Live C. neoteretis and C. reniforme reach d13C values of -7.5 and -5.5 per mil Vienna Pee Dee Belemnite (VPDB), respectively, whereas d13C values of their empty tests are higher by 4 per mil and 3 per mil. However, d13C values of empty tests are never lower than those of stained specimens, although they are still lower than empty tests from the control site. This indicates that authigenic calcite precipitates at or below the sediment surface are not significantly influencing the stable isotopic composition of foraminiferal shells. The comparatively high d13C results rather from upward convection of pore water and fluid mud during active methane venting phases at these sites. These processes mingle tests just recently calcified with older ones secreted at intermittent times of less or no methane discharge. Since cytoplasm-containing specimens of suspension feeder F. wuellerstorfi are almost exclusively found attached to pogonophores, which protrude up to 3 cm above the sediment, and d13C values of bottom-water-dissolved inorganic carbon (DIC) are not significantly depleted, we conclude that low test d13C values of F. wuellerstorfi are the result of incorporation of heavily 13C-depleted methanotrophic biomass that these specimens feed on rather than because of low bottom water d13CDIC. Alternatively, the pogonophores, which are rooted at depth in the upper sediment column, may serve as a conduit for depleted d13CDIC that ultimately influences the calcification process of F. wuellerstorfi attached to the pogonophoran tube well above the sediment/water interface. The lowest d13C of live specimens of the endobenthic C. neoteretis and C. reniforme are within the range of pore water d13CDIC values, which exceed those that could be due to organic matter decomposition, and thus, in fact, document active methane release in the sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, the ecology and feeding habits of euphausiids are described. The samples were taken at the time of the NE-monsoon (1964/65) by R. V. "Meteor" in the Arabian Sea and adjacent waters. 24 species were determined. According to distribution of the species, the following marine areas can be distinguished: Arabian Sea: 24 species, dominant are Euphausia diomedeae, E. tenera, E. distinguenda, Stylocheiron carinatum. Gulf of Aden: 10 species, dominant are Euphausia diomedeae, E. distinguenda. Red Sea: 6 species, dominant are Euphausia diomedeae, E. distinguenda. Gulf of Oman : 5 Species, dominant are Euphausia distinguenda, Pseudeupbaufia latifrons. Persian Gulf: 1 species - Pseudeuphausia latifrons. The total number of euphausiids indicate the biomass of this group. High densities of euphausiids (200-299 and > 300 individuals/100 m**3) occur in the innermost part of the Gulf cf Aden, in the area south of the equator near the African east coast, near Karachi (Indian west coast) and in the Persian Gulf. Comparison with data relating to production biology confirms that these are eutrophic zones which coincide with areas in which upwelling occurs at the time of the NE-monsoon. The central part of the Arabian Sea differs from adjacent waters by virtue of less dense euphausiid populations (> 199 individuals/100 m**3). Measurements relating to production biology demonstrate a relatively low concentration of primary food sources. Food material was ascertained by analysis of stomach content. The following omnivorous species were examined: Euphausia diomedeae, E. distinguenda, E. tenera, Pseudeuphausia latifrons and Thysanopoda tricuspidata. Apart from crustacean remains large numbers of Foraminifera, Radiolaria, tintinnids, dinoflagellates were found in the stomachs. Quantitatively crustaceans form the most important item in the diet. Food selection on the basis of size and form appears to be restricted to certain genera of tintinnids. The genera Stylocheiron and Nematoscelis are predators. Only crustacean remains were found in the stomachs of Stylocheiron abbreviatum, whereas Radiolaria, Foraminifera and tintinnids occurred to some extent in Nematasceli sp. Different euphausiids in the food chain in the Arabian Sea. In omnivorous species the position is variable, since they not only feed by filtering autotrophic and heterotrophic Protista, but also by predation on zooplankton. Carnivorous species without filtering apparatus feed exclusively on zooplankton of the size of copepods. Only these species are well established as occupying a higher position in the food chain. The parasitic protozoan Tbalassomyces fagei was found on Euphausia diomedeae, E. fenera, E. distinguenda and E. sanzoi.