11 resultados para Fatigue (Physiological condition).

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of a less saline and warmer surface water (~1 m thick) caused by melting of the ice was observed in the fjord during the first days of May. In summer the less saline surface layer was about 3 m thick. Euphotic depth measured under the ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (content of total particulate matter in the fjord reached 1.66 kg/m**2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, presence of peridinin indicates presence of Dinophyta and alloxanthin - occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a / chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chlorophyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer / chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of simultaneous determinations of chlorophyll "a" concentrations and primary production in the northeastern part of the Tropical Atlantic in spring 1977 are discussed. Primary production was low (250-350 mg C/m**2/day in the open parts of the ocean and high (600-1500 mg C/m**2/day) mainly in zones of current divergences and coastal region of the West Africa. Chlorophyll "a" concentration throughout the euphotic zone varied from 6 to 36 mg/m**3 and in the surface layer from 0.05 to 0.60 mg/m**3. Uneven distribution of primary production is due to physiological condition of phytoplankton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of medium term (32 d) hypercapnia on the immune response of Mytilus edulis were investigated in mussels exposed to acidified (using CO2) sea water (pH 7.7, 7.5 or 6.7; control: pH 7.8). Levels of phagocytosis increased significantly during the exposure period, suggesting an immune response induced by the experimental set-up. However, this induced stress response was suppressed when mussels were exposed to acidified sea water. Acidified sea water did not have any significant effects on other immuno-surveillance parameters measured (superoxide anion production, total and differential cell counts). These results suggest that ocean acidification may impact the physiological condition and functionality of the haemocytes and could have a significant effect on cellular signalling pathways, particularly those pathways that rely on specific concentrations of calcium, and so may be disrupted by calcium carbonate shell dissolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physiological condition of larval Antarctic krill was investigated during austral autumn 2004 and winter 2006 in the Lazarev Sea, to provide better understanding of a critical period of their life cycle. The condition of larvae was quantified in both seasons by determining their body length (BL), dry mass (DM), elemental- and biochemical composition, as well as stomach content analysis, and rates of metabolism and growth. Overall the larvae in autumn were in better condition under the ice than in open water, and for those under the ice there was a decrease in condition from autumn to winter. Thus growth rates of furcilia larvae in open water in autumn were similar to winter values under the ice (mean 0.008 mm/d), whereas autumn, under ice values were higher: 0.015 mm/d. Equivalent larval stages had up to 30% lower BL and 70% lower DM in winter compared to autumn, with mean oxygen consumption 44% lower (0.54 µl O2 DM/h). However, their ammonium excretion rates doubled (from 0.03-0.06 µg NH4 DM/h) so their mean O:N ratio was 46 in autumn and 15 in winter. Thus differing metabolic substrates were used between autumn and winter, suggesting a flexible overwintering strategy, as suggested for adults. The larvae were eating small copepods (Oithona spp.) and/or protozoans as well as autotrophic food under the ice. However, pelagic Chlorophyll a (Chl a) was a good predictor for growth in both seasons. The physics (current speed/ice topography) probably has a critical part to play in whether larval krill can exploit the food that may be associated with sea ice or be advected away from such suitable feeding habitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms inhabiting coastal waters naturally experience diel and seasonal physico-chemical variations. According to various assumptions, coastal species are either considered to be highly tolerant to environmental changes or, conversely, living at the thresholds of their physiological performance. Therefore, these species are either more resistant or more sensitive, respectively, to ocean acidification and warming. Here, we focused on Crepidula fornicata, an invasive gastropod that colonized bays and estuaries on northwestern European coasts during the 20th century. Small (<3 cm in length) and large (>4.5 cm in length), sexually mature individuals of C. fornicata were raised for 6 months in three different pCO2 conditions (390 µatm, 750 µatm, and 1400 µatm) at four successive temperature levels (10°C, 13°C, 16°C, and 19°C). At each temperature level and in each pCO2 condition, we assessed the physiological rates of respiration, ammonia excretion, filtration and calcification on small and large individuals. Results show that, in general, temperature positively influenced respiration, excretion and filtration rates in both small and large individuals. Conversely, increasing pCO2 negatively affected calcification rates, leading to net dissolution in the most drastic pCO2 condition (1400 µatm) but did not affect the other physiological rates. Overall, our results indicate that C. fornicata can tolerate ocean acidification, particularly in the intermediate pCO2 scenario. Moreover, in this eurythermal species, moderate warming may play a buffering role in the future responses of organisms to ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is predicted to have widespread implications for marine bivalve mollusks. While our understanding of its impact on their physiological and behavioral responses is increasing, little is known about their reproductive responses under future scenarios of anthropogenic climate change. In this study, we examined the physiological energetics of the Manila clam Ruditapes philippinarum exposed to CO2-induced seawater acidification during gonadal maturation. Three recirculating systems filled with 600 L of seawater were manipulated to three pH levels (8.0, 7.7, and 7.4) corresponding to control and projected pH levels for 2100 and 2300. In each system, temperature was gradually increased ca. 0.3 °C per day from 10 to 20 °C for 30 days and maintained at 20 °C for the following 40 days. Irrespective of seawater pH levels, clearance rate (CR), respiration rate (RR), ammonia excretion rate (ER), and scope for growth (SFG) increased after a 30-day stepwise warming protocol. When seawater pH was reduced, CR, ratio of oxygen to nitrogen, and SFG significantly decreased concurrently, whereas ammonia ER increased. RR was virtually unaffected under acidified conditions. Neither temperature nor acidification showed a significant effect on food absorption efficiency. Our findings indicate that energy is allocated away from reproduction under reduced seawater pH, potentially resulting in an impaired or suppressed reproductive function. This interpretation is based on the fact that spawning was induced in only 56% of the clams grown at pH 7.4. Seawater acidification can therefore potentially impair the physiological energetics and spawning capacity of R. philippinarum.