15 resultados para Exposure to tobaco smoke

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial variations are reported for egg production and hatching rates of copepods exposed to elevated carbon dioxide concentrations (pCO2). One possible explanation, as found in other marine taxa, is that prior parental exposure to elevated pCO2 (and/or decreased pH) affects reproductive performance. Previous studies have adopted two distinct approaches, either (1) expose male and female copepoda to the test pCO2/pH scenarios, or (2) solely expose egg-laying females to the tests. Although the former approach is more realistic, the majority of studies have used the latter approach. Here, we investigated the variation in egg production and hatching success of Acartia tonsa between these two experimental designs, across five different pCO2 concentrations (385-6000 µatm pCO2). In addition, to determine the effect of pCO2 on the hatching success with no prior parental exposure, eggs produced and fertilized under ambient conditions were also exposed to these pCO2 scenarios. Significant variations were found between experimental designs, with approach (1) resulting in higher impacts; here >20% difference was seen in hatching success between experiments at 1000 µatm pCO2 scenarios (2100 year scenario), and >85% at 6000 µatm pCO2. This study highlights the potential to misrepresent the reproductive response of a species to elevated pCO2 dependent on parental exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the transition from innate to adaptive immunity is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). We showed that observable differences were largely attributable to final exposures and that there is no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. Final exposure did not unify expression patterns of heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological responses (ingestion rate, absorption rate and efficiency, respiration, rate, excretion rate) and scope for growth of a subtidal scavenging gastropod Nassarius conoidalis under the combined effects of ocean acidification (pCO2 levels: 380, 950, 1250 µatm) and temperature (15, 30 °C) were investigated for 31 days. There was a significant reduction in all the physiological rates and scope for growth following short-term exposure (1-3 days) to elevated pCO2 except absorption efficiency at 15 °C and 30 °C, and respiration rate and excretion rate at 15 °C. The percentage change in the physiological rates ranged from 0% to 90% at 15 °C and from 0% to 73% at 30 °C when pCO2 was increased from 380 µatm to 1250 µatm. The effect of pCO2 on the physiological rates was enhanced at high temperature for ingestion, absorption, respiration and excretion. When the exposure period was extended to 31 days, the effect of pCO2 was significant on the ingestion rate only. All the physiological rates remained unchanged when temperature increased from 24 °C to 30 °C but the rates at 15 °C were significantly lower, irrespective of the duration of exposure. Our data suggested that a medium-term exposure to ocean acidification has no effect on the energetics of N. conoidalis. Nevertheless, the situation may be complicated by a longer term of exposure and/or a reduction in salinity in a warming world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the impact of medium-term exposure to elevated pCO2 levels (750-1200 ppm) on the physiological processes of juvenile Mytilus chilensis mussels over a period of 70 d in a mesocosm system. Three equilibration tanks filled with filtered seawater were adjusted to three pCO2 levels: 380 (control), 750 and 1200 ppm by bubbling air or an air-CO2 mixture through the water. For the control, atmospheric air (with aprox. 380 ppm CO2) was bubbled into the tank; for the 750 and 1200 ppm treatments, dry air and pure CO2 were blended to each target concentration using mass flow controllers for air and CO2. No impact on feeding activity was observed at the beginning of the experiment, but a significant reduction in clearance rate was observed after 35 d of exposure to highly acidified seawater. Absorption rate and absorption efficiency were reduced at high pCO2 levels. In addition, oxygen uptake fell significantly under these conditions, indicating a metabolic depression. These physiological responses of the mussels resulted in a significant reduction of energy available for growth (scope for growth) with important consequences for the aquaculture of this species during medium-term exposure to acid conditions. The results of this study clearly indicate that high pCO2 levels in the seawater have a negative effect on the health of M. chilensis. Therefore, the predicted acidification of seawater associated with global climate change could be harmful to this ecologically and commercially important mussel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg/L, 6 mg/L). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic atmospheric CO2 concentrations are increasing rapidly, resulting in declining seawater pH (ocean acidification). The majority of ocean acidification research to date has focused on the effects of decreased pH in single-species experiments. To assess how decreased pH may influence natural macroalgal-grazer assemblages, we conducted a mesocosm experiment with the common, chemically defended Antarctic brown macroalga Desmarestia menziesii and natural densities of its associated grazer assemblage, predominantly amphipods. Grazer assemblages were collected from the immediate vicinity of Palmer Station (64°46'S, 64°03'W) in March 2013. Assemblages were exposed for 30 days to three levels of pH representing present-day mean summer ambient conditions (pH 8.0), predicted near-future conditions (2100, pH 7.7), and distant-future conditions (pH 7.3). A significant difference was observed in the composition of mesograzer assemblages in the lowest pH treatment (pH 7.3). The differences between assemblages exposed to pH 7.3 and those maintained in the other two treatments were driven primarily by decreases in the abundance of the amphipod Metaleptamphopus pectinatus with decreasing pH, reduced copepod abundance at pH 7.7, and elevated ostracod abundance at pH 7.7. Generally, the assemblages maintained at pH 7.7 were not significantly different from those at ambient pH, demonstrating resistance to short-term decreased pH. The relatively high prevalence of generalist amphipods may have contributed to a net stabilizing effect on the assemblages exposed to decreased pH. Overall, our results suggest that crustacean grazer assemblages associated with D. menziesii, the dominant brown macroalgal species of the western Antarctic Peninsula, may be resistant to short-term near-future decreases in seawater pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human-assisted, trans-generational exposure to ocean warming and acidification has been proposed as a conservation and/or restoration tool to produce resilient offspring. To improve our understanding of the need for and the efficacy of this approach, we characterised life history and physiological responses in offspring of the marine polychaete Ophryotrocha labronica exposed to predicted ocean warming (OW: + 3 °C), ocean acidification (OA: pH -0.5) and their combination (OWA: + 3 °C, pH -0.5), following the exposure of their parents to either control conditions (within-generational exposure) or the same conditions (trans-generational exposure). Trans-generational exposure to OW fully alleviated the negative effects of within-generational exposure to OW on fecundity and egg volume and was accompanied by increased metabolic activity. While within-generational exposure to OA reduced juvenile growth rates and egg volume, trans-generational exposure alleviated the former but could not restore the latter. Surprisingly, exposure to OWA had no negative impacts within- or trans-generationally. Our results highlight the potential for trans-generational laboratory experiments in producing offspring that are resilient to OW and OA. However, trans-generational exposure does not always appear to improve traits, and therefore may not be a universally useful tool for all species in the face of global change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceans are experiencing increasing acidification in parallel to a distinct warming trend in consequence of ongoing climate change. Rising seawater temperatures are mediating a northward shift in distribution of Atlantic cod (Gadus morhua), into the habitat of polar cod (Boreogadus saida), that is associated with retreating cold water masses. This study investigates the competitive strength of the co-occurring gadoids under ocean acidification and warming (OAW) scenarios. Therefore, we incubated specimens of both species in individual tanks for 4 months, under different control and projected temperatures (polar cod: 0, 3, 6, 8 °C, Atlantic cod: 3, 8, 12, 16 °C) and PCO2 conditions (390 and 1170 µatm) and monitored growth, feed consumption and standard metabolic rate. Our results revealed distinct temperature effects on both species. While hypercapnia by itself had no effect, combined drivers caused nonsignificant trends. The feed conversion efficiency of normocapnic polar cod was highest at 0 °C, while optimum growth performance was attained at 6 °C; the long-term upper thermal tolerance limit was reached at 8 °C. OAW caused only slight impairments in growth performance. Under normocapnic conditions, Atlantic cod consumed progressively increasing amounts of feed than individuals under hypercapnia despite maintaining similar growth rates during warming. The low feed conversion efficiency at 3 °C may relate to the lower thermal limit of Atlantic cod. In conclusion, Atlantic cod displayed increased performance in the warming Arctic such that the competitive strength of polar cod is expected to decrease under future OAW conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. BIOLOGICAL SIGNIFICANCE: The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress.