4 resultados para Exposed population

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extinction is a remarkably difficult phenomenon to study under natural conditions. This is because the outcome of stress exposure and associated fitness reduction is not known until the extinction occurs and it remains unclear whether there is any phenotypic reaction of the exposed population that can be used to predict its fate. Here we take advantage of the fossil record, where the ecological outcome of stress exposure is known. Specifically, we analyze shell morphology of planktonic Foraminifera in sediment samples from the Mediterranean, during an interval preceding local extinctions. In two species representing different plankton habitats, we observe shifts in trait state and decrease in variance in association with non-terminal stress, indicating stabilizing selection. At terminal stress levels, immediately before extinction, we observe increased growth asymmetry and trait variance, indicating disruptive selection and bet-hedging. The pre-extinction populations of both species show a combination of trait states and trait variance distinct from all populations exposed to non-terminal levels of stress. This finding indicates that the phenotypic history of a population may allow the detection of threshold levels of stress, likely to lead to extinction. It is thus an alternative to population dynamics in studying and monitoring natural population ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This cross-sectional study was conducted in southern Minas Gerais, in two counties: São Gonçalo do Sapucaí and Silvianópolis. Presented as objective to verify the important variables associated with the occurrence of symptoms of subacute intoxication related to pesticides exposure. A questionnaire was dedicated to a sample of 412 workers. An analysis of non-conditional logistic regression was applied gradually. The likelihood ratio method was used to define the significant variables in the final model. Of the analysed population, 59.2% reported symptoms typical of subacute intoxication. Of the respondents, 91.5% reported knowing the deleterious effects associated with exposure to pesticides. The adjusted model was found with the significant variables: being male that presented Prevalence Odds Ratio (POR) adjusted . PORof 0.54 (95% CI 0.36 to 0.81), already hospitalized for poisoning with pesticides, POR of 3.26 (95% CI 1.08 to 9.82), living in the rural area of residence., POR of 2.17 (95% CI 1.20 to 3.93) and type of employment relationship or temporary employment, POR of 2.32 (95% CI 1.08 to 4.95).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO2 perturbation experiment at ambient and elevated atmospheric CO2 levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO2 conditions (~672 ppm), ingestion rates of krill averaged 78 µg C/individual/d and were 3.5 times higher than krill ingestion rates at ambient, present day CO2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO2 treatment than at ambient CO2 concentrations. Excretion of urea, however, was ~17% lower in the high CO2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification has the potential to affect growth and calcification of benthic marine invertebrates, particularly during their early life history. We exposed field-collected juveniles of Asterias rubens from Kiel Fjord (western Baltic Sea) to 3 seawater CO2 partial pressure (pCO2) levels (ranging from around 650 to 3500 µatm) in a long-term (39 wk) and a short-term (6 wk) experiment. In both experiments, survival and calcification were not affected by elevated pCO2. However, feeding rates decreased strongly with increasing pCO2, while aerobic metabolism and NH4+ excretion were not significantly affected by CO2 exposure. Consequently, high pCO2 reduced the scope for growth in A. rubens. Growth rates decreased substantially with increasing pCO2 and were reduced even at pCO2 levels occurring in the habitat today (e.g. during upwelling events). Sea stars were not able to acclimate to higher pCO2, and growth performance did not recover during the long-term experiment. Therefore, the top-down control exerted by this keystone species may be diminished during periods of high environmental pCO2 that already occur occasionally and will be even higher in the future. However, some individuals were able to grow at high rates even at high pCO2, indicating potential for rapid adaption. The selection of adapted specimens of A. rubens in this seasonally acidified habitat may lead to higher CO2 tolerance in adult sea stars of this population compared to the juvenile stage. Future studies need to address the synergistic effects of multiple stressors such as acidification, warming and reduced salinity, which will simultaneously impact the performance of sea stars in this habitat.