3 resultados para Exponential power distribution
em Publishing Network for Geoscientific
Resumo:
A detailed assessment of the respective roles of production, export, and subsequent preservation of organic carbon (Corg) in the eastern Mediterranean (EMED) sediments during the formation of sapropels remains elusive. Here we present new micropaleontological results for both surface samples taken at several locations in the EMED and last interglacial sapropel S5 from core LC21 in the southeastern Aegean Sea. A strong exponential anticorrelation between relative abundances of the lower photic zone coccolithophore Florisphaera profundain the surface sediments and modern concentrations of chlorophyll a (Chl-a) at the sea surface suggests thatF. profunda percentages can be used to track past productivity changes in the EMED. Prior to S5 deposition, an abrupt and large increase of F. profunda percentages in LC21 coincided (within the multidecadal resolution of the records) with the marked freshening of EMED surface waters. This suggests a strong coupling between freshwater-bound surface to intermediate water (density) stratification and enhanced upward advection of nutrients to the base of the photic zone, fuelling a productive deep chlorophyll maximum (DCM) underneath a nutrient-starved surface layer. Our findings imply that (at least) at the onset of sapropel formation physical and biogeochemical processes likely operated in tandem, enabling high Corg accumulation at the seafloor.
Resumo:
Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
Resumo:
Wind- induced exposure is one of the major forces shaping the geomorphology and biota in coastal areas. The effect of wave exposure on littoral biota is well known in marine environments (Ekebon et al., 2003; Burrows et al., 2008). In the Cabrera Archipelago National Park wave exposure has demostrated to have an effect on the spatial distribution of different stages of E.marginatus (Alvarez et al., 2010). Standarized average wave exposures during 2008 along the Cabrera Archipelago National park coast line were calculated to be applied in studies of littoral species distribution within the archipelago. Average wave exposure (or apparent wave power) was calculated for points located 50 m equidistant on the coastline following the EXA methodology (EXposure estimates for fragmented Archipelagos) (Ekebon et al., 2003). The average wave exposures were standardized from 1 to 100 (minimum and maximum in the area), showing coastal areas with different levels of mea wave exposure during the year. Input wind data (direction and intensity) from 2008 was registered at the Cabrera mooring located north of Cabrera Archipelago. Data were provided by IMEDEA (CSIC-UIB, TMMOS http://www.imedea.uib-csic.es/tmoos/boyas/). This cartography has been developed under the framework of the project EPIMHAR, funded by the National Park's Network (Spanish Ministry of Environment, Maritime and Rural Affairs, reference: 012/2007 ). Part of this work has been developed under the research programs funded by "Fons de Garantia Agrària i Pesquera de les Illes Balears (FOGAIBA)".