32 resultados para Exploitation of residues

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pockmarks are seafloor depressions commonly associated with fluid escape from the seabed and are believed to contribute noticeably to the transfer of methane into the ocean and ultimately into the atmosphere. They occur in many different areas and geological contexts, and vary greatly in size and shape. Nevertheless, the mechanisms of pockmark growth are still largely unclear. Still, seabed methane emissions contribute to the global carbon budget, and understanding such processes is critical to constrain future quantifications of seabed methane release at local and global scales. The giant Regab pockmark (9°42.6' E, 5°47.8' S), located at 3160 m water depth near the Congo deep-sea channel (offshore southwestern Africa), was investigated with state-of-the-art mapping devices mounted on IFREMER's (French Research Institute for Exploitation of the Sea) remotely operated vehicle (ROV) Victor 6000. ROV-borne micro-bathymetry and backscatter data of the entire structure, a high-resolution photo-mosaic covering 105,000 m2 of the most active area, sidescan mapping of gas emissions, and maps of faunal distribution as well as of carbonate crust occurrence are combined to provide an unprecedented detailed view of a giant pockmark. All data sets suggest that the pockmark is composed of two very distinctive zones in terms of seepage intensity. We postulate that these zones are the surface expression of two fluid flow regimes in the subsurface: focused flow through a fractured medium and diffuse flow through a porous medium. We conclude that the growth of giant pockmarks is controlled by self-sealing processes and lateral spreading of rising fluids. In particular, partial redirection of fluids through fractures in the sediments can drive the pockmark growth in preferential directions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sedimentary records from California's Northern Channel Islands and the adjacent Santa Barbara Basin (SBB) indicate intense regional biomass burning (wildfire) at the Ållerød-Younger Dryas boundary (~13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present [ka]. Radiocarbon ages will be identified and clearly marked "14C years".). Multiproxy records in SBB Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt ecosystem disruption is evident on the Northern Channel Islands at the Ållerød-Younger Dryas boundary with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human presence on these islands at 13.1-12.9 ka (~11,000-10,900 14C years) is followed by an apparent 600-800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic impact hypothesis [Firestone et al., 2007, doi:10.1073/pnas.0706977104].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elemental and Pb isotope measurements were performed on leachates and residues from surface sediments and two <50 cm cores (MC04 and MC16) collected along a NE-SW transect through Fram Strait. Geochemical and isotopic properties of residues from surface sediments define three distinct spatial domains within the Strait: 1) the easternmost edge of the Strait; 2) the eastern part of the Strait off the Svalbard margins; and 3) the western part of the Strait, influenced by supplies from Svalbard, the Nordic seas with possible contributions from northwestern Siberian margins, and sea ice and water outflow from the Arctic, respectively. Core MC16, in the third domain beneath the outflowing Arctic waters, spans the Last Glacial Maximum present interval. Sediments from this core were leached to obtain detrital (residues) and exchangeable (leachates) fractions. Detrital supplies to core MC16 are believed to originate mainly from melting of the overlying sea ice and thus can be used to document changes in Arctic sedimentary sources. Detrital 206Pb/204Pb and 208Pb/206Pb ratios illustrate two mixing trends, Trends A and B, corresponding to the pre- and post-Younger Dryas (YD) intervals, respectively. These trends represent binary mixtures with a common end-member (Canadian margins) and either a Siberian (Trend A) or Greenland (Trend B) margin end-member. The YD is marked by an isotopic excursion toward the Canadian end-member, suggesting a very active Beaufort Gyre possibly triggered by massive drainage of the Laurentide ice sheet. Pb isotope compositions of leachates, thought to represent the signature of the overlying water masses, define a unique linear trend coincident with Trend A. This suggests that water masses acquired their signature through exchange with particulate fluxes along the Canadian and Siberian continental margins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bathymetry based on data recorded during MSM34-2 between 27.12.2013 and 18.01.2014 in the Black Sea. The main objective of this cruise was the mapping and imaging of the gas hydrate distribution and gas accumulations as well as possible gas migration pathways. Objectives of Cruise: Gas hydrates have been the focus of scientific and economic interest for the past 15-20 years, mainly because the amount of carbon stored in gas hydrates is much greater than in other carbon reservoirs. Several countries including Japan, Korea and India have launched vast reasearch programmes dedicated to the exploration for gas hydrate resources and ultimately the exploitation of the gas hydrates for methane. The German SUGAR project that is financed the the Ministry of Education and Research (BmBF) and the Ministry of Economics (BmWi) aims at developing technology to exploit gas hydrate resources by injecting and storing CO2 instead of methane in the hydrates. This approach includes techniques to locate and quantify hydrate reservoirs, drill into the reservoir, extract methane from the hydrates by replacing it with CO2, and monitor the thus formed CO2-hydrate reservoir. Numerical modeling has shown that any exploitation of the gas hydrates can only be succesful, if sufficient hydrate resources are present within permeable reservoirs such as sandy or gravelly deposits. The ultimate goal of the SUGAR project being a field test of the technology developed within the project, knowledge of a suitable test site becomes crucial. Within European waters only the Norwegian margin and the Danube deep-sea fan show clear geophysical evidence for large gas hydrate accumulations, but only the Danube deep-sea fan most likely contains gas hydrates within sandy deposits. The main objective of cruise MSM34 therefore is locating and characterising suitable gas hydrate deposits on the Danube deep-sea fan.