16 resultados para Event-log animation

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

During summer 2014 (mid-July - mid-September 2014), early life-stage Fucus vesiculosus were exposed to combined ocean acidification and warming (OAW) in the presence and absence of enhanced nutrient levels (OAW x N experiment). Subsequently, F. vesiculosus germlings were exposed to a final upwelling disturbance during 3 days (mid-September 2014). Experiments were performed in the near-natural scenario "Kiel Outdoor Benthocosms" including natural fluctuations in the southwestern Baltic Sea, Kiel Fjord, Germany (54°27 'N, 10°11 'W). Genetically different sibling groups and different levels of genetic diversity were employed to test to which extent genetic variation would result in response variation. The data presented here show the phenotypical response (growth and survival) of the different experimental populations of F. vesiculosus under OAW, nutrient enrichment and the upwelling event. Log effect ratios demonstrate the responses to enhanced OAW and nutrient concentrations relative to the ambient conditons. Carbon, nitrogen content (% DW) and C:N ratios were measured after the exposure of ambient and high nutrient levels. Abiotic conditions the OAW x nutrient experiment and the upwelling event, are shown.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing evidence suggests that the low atmospheric CO2 concentration of the ice ages resulted from enhanced storage of CO2 in the ocean interior, largely as a result of changes in the Southern Ocean1. Early in the most recent deglaciation, a reduction in North Atlantic overturning circulation seems to have driven CO2 release from the Southern Ocean**2, 3, 4, 5, but the mechanism connecting the North Atlantic and the Southern Ocean remains unclear. Biogenic opal export in the low-latitude ocean relies on silicate from the underlying thermocline, the concentration of which is affected by the circulation of the ocean interior. Here we report a record of biogenic opal export from a coastal upwelling system off the coast of northwest Africa that shows pronounced opal maxima during each glacial termination over the past 550,000 years. These opal peaks are consistent with a strong deglacial reduction in the formation of silicate-poor glacial North Atlantic intermediate water**2 (GNAIW). The loss of GNAIW allowed mixing with underlying silicate-rich deep water to increase the silicate supply to the surface ocean. An increase in westerly-wind-driven upwelling in the Southern Ocean in response to the North Atlantic change has been proposed to drive the deglacial rise in atmospheric CO2 (refs 3, 4). However, such a circulation change would have accelerated the formation of Antarctic intermediate water and sub-Antarctic mode water, which today have as little silicate as North Atlantic Deep Water and would have thus maintained low silicate concentrations in the Atlantic thermocline. The deglacial opal maxima reported here suggest an alternative mechanism for the deglacial CO2 release**5, 6. Just as the reduction in GNAIW led to upward silicate transport, it should also have allowed the downward mixing of warm, low-density surface water to reach into the deep ocean. The resulting decrease in the density of the deep Atlantic relative to the Southern Ocean surface promoted Antarctic overturning, which released CO2 to the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple copies of Cretaceous black shales extending from the early Cenomanian to the end of the Santonian were recovered at five sites on Demerara Rise during Leg 207 of the Ocean Drilling Program. These sediments are primarily composed of laminated organic-rich claystones interbedded with coarser, lightly laminated foraminferal-bearing packstones and wackestones. The black shales represent the local expression of widespread organic-rich sedimentation in the Atlantic during the mid-Cretaceous. However, incomplete recovery prevented construction of continuous composite sections, resulting in uncertainties concerning the correct stratigraphic placement of individual cores. By combining high-resolution measurements of bulk density collected shipboard on the multisensor track with continuous downhole measurements of formation resistivity using the Formation MicroScanner, an equivalent logging depth scale was constructed for black shales recovered from Sites 1258, 1260, and 1261. The integrated depths approach centimeter-scale resolution and are supported by comparisons of coarser resolution natural gamma ray emissions collected on cores and through downhole logging operations. The new depths highlight the extent of both intra- and intercore gaps and provide an opportunity to further constrain temporal and spatial paleoceanographic changes captured in proxy records from these sediments.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: