25 resultados para Estuarine ecology.
em Publishing Network for Geoscientific
Resumo:
The silicoflagellate and ebridian assemblages in early middle Eocene Arctic cores obtained by IODP Expedition 302 (ACEX) were studied in order to decipher the paleoceanography of the upper water column. The assemblages in Lithologic Unit 2 (49.7-45.1 Ma), one of the biosiliceous intervals, were usually endemic as compared to the assemblages that occurred outside of the Arctic Ocean. The presence of these endemic assemblages is probably due to a unique environmental setting, controlled by the degree of mixing between the low-salinity Arctic waters and relatively high salinity waters supplied from outside the Arctic Ocean, such as the Atlantic and possibly the Western Siberian Sea. Using the basin-to-basin fractionation model, the early middle Eocene Arctic Ocean corresponds to an estuarine circulation type, which includes the modern-day Black Sea. The abundant down-core occurrence of ebridians strongly suggests the past presence of low-salinity waters, and may indicate that low oxygen concentrations prevailed in the euphotic layer, on the basis of the ecology of the modern ebridian Hermesinum adriaticum.
Resumo:
The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.
Resumo:
Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.
Resumo:
Speciation of Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd was studied in 52 samples of bottom sediments collected during Cruise 49 of the R/V "Dmitry Mendeleev" to the estuaries of the Ob and Yenisei rivers and to the southwest Kara Sea. Immediately after sampling the samples were subjected to on-board consecutive extraction to separate metal species according to their modes of occurrence in the sediments: (1) adsorbed, (2) amorphous Fe-Mn hydroxides and related metals, (3) organic + sulfide, and (4) residual, or lithogenic. Atomic absorption spectroscopy of the extracts was carried out at a stationary laboratory. Distribution of Fe, Zn, Cu, Co, Ni, Cr, Pb, and Cd species is characterized by predominance of lithogenic or geochemically inert modes (70-95% of bulk contents), in which the metals are bound in terrigenous and clastic mineral particles and organic detritus. About half of total Mn amount and 15-30% of Zn and Cu are contained in geochemically mobile modes. Spatiotemporal variations in proportions of the metal species in the surface layer of sediments along sub-meridional sections and through vertical sections of bottom sediment cores testify that Mn and, to a lesser extent, Cu are the most sensitive to changes in sedimentation environment. The role of their geochemically mobile species notably increases under reducing conditions.
Resumo:
Large-scale environmental patterns in the Humboldt Current System (HCS) show major changes during strong El Niño episodes, leading to the mass mortality of dominant species in coastal ecosystems. Here we explore how these changes affect the life-history traits of the surf clam Mesodesma donacium. Growth and mortality rates under normal temperature and salinity were compared to those under anomalous (El Niño) higher temperature and reduced salinity. Moreover, the reproductive spatial-temporal patterns along the distribution range were studied, and their relationship to large-scale environmental variability was assessed. M. donacium is highly sensitive to temperature changes, supporting the hypothesis of temperature as the key factor leading to mass mortality events of this clam in northern populations. In contrast, this species, particularly juveniles, was remarkably tolerant to low salinity, which may be related to submarine groundwater discharge in Hornitos, northern Chile. The enhanced osmotic tolerance by juveniles may represent an adaptation of early life stages allowing settlement in vacant areas at outlets of estuarine areas. The strong seasonality in freshwater input and in upwelling strength seems to be linked to the spatial and temporal patterns in the reproductive cycle. Owing to its origin and thermal sensitivity, the expansion and dominance of M. donacium from the Pliocene/Pleistocene transition until the present seem closely linked to the establishment and development of the cold HCS. Therefore, the recurrence of warming events (particularly El Niño since at least the Holocene) has submitted this cold-water species to a continuous local extinction-recolonization process.
Resumo:
Although ocean acidification is expected to reduce carbonate saturation and yield negative impacts on open-ocean calcifying organisms in the near future, acidification in coastal ecosystems may already be affecting these organisms. Few studies have addressed the effects of sedimentary saturation state on benthic invertebrates. Here, we investigate whether sedimentary aragonite saturation (Omega aragonite) and proton concentration ([H+]) affect burrowing and dispersal rates of juvenile soft-shell clams (Mya arenaria) in a laboratory flume experiment. Two size classes of juvenile clams (0.5-1.5 mm and 1.51-2.5 mm) were subjected to a range of sediment Omega aragonite and [H+] conditions within the range of typical estuarine sediments (Omega aragonite 0.21-1.87; pH 6.8-7.8; [H+] 1.58 × 10**-8-1.51 × 10**- 7) by the addition of varying amounts of CO2, while overlying water pH was kept constant ~ 7.8 (Omega aragonite ~ 1.97). There was a significant positive relationship between the percent of juvenile clams burrowed in still water and Omega aragonite and a significant negative relationship between burrowing and [H+]. Clams were subsequently exposed to one of two different flow conditions (flume; 11 cm/s and 23 cm/s) and there was a significant negative relationship between Omega aragonite and dispersal, regardless of clam size class and flow speed. No apparent relationship was evident between dispersal and [H+]. The results of this study suggest that sediment acidification may play an important role in soft-shell clam recruitment and dispersal. When assessing the impacts of open-ocean and coastal acidification on infaunal organisms, future studies should address the effects of sediment acidification to adequately understand how calcifying organisms may be affected by shifting pH conditions.
Resumo:
Widespread disposal of plastics negatively affects biotic and abiotic components of marine systems. Monitoring plastics transitioning through estuaries is vital in assessing terrestrial inputs to oceanic environments. Data on microplastics (particles <= 5mm) in estuaries are scant. This study determined microplastic levels within five estuaries along the Durban coastline and on intervening beaches. Plastics were isolated from estuarine sediment, beach sediment and the surface water of each estuary and characterised. Sediment at the Bayhead area of Durban Harbour was found to contain the highest average plastic concentrations (745.40 ± 129.72 particles per 500ml). Overall an attenuating concentration trend away from the city center was found. Fragments composed the largest percent of plastics (59 %) found in Bayhead, whereas fibers dominated other estuaries (Mdloti - 66 %, uMgeni - 38 %, Isipingo - 45 % and iLovu - 53 %). Plastic particle concentration in estuarine sediment generally increased from larger to smaller size classes. If high input and high retention in the harbour is coupled with high organic and metal pollutant loads, this area can become (if not already) a major environmental hazard.
Resumo:
Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.
Resumo:
We investigated the effects of ocean acidification on juvenile clams Ruditapes decussatus (average shell length 10.24 mm) in a controlled CO2 perturbation experiment. The carbonate chemistry of seawater was manipulated by diffusing pure CO2, to attain two reduced pH levels (by -0.4 and -0.7 pH units), which were compared to unmanipulated seawater. After 75 days we found no differences among pH treatments in terms of net calcification, size or weight of the clams. The naturally elevated total alkalinity of local seawater probably contributed to buffer the effects of increased pCO2 and reduced pH. Marine organisms may, therefore, show diverse responses to ocean acidification at local scales, particularly in coastal, estuarine and transitional waters, where the physical-chemical characteristics of seawater are most variable. Mortality was significantly reduced in the acidified treatments. This trend was probably related to the occurrence of spontaneous spawning events in the control and intermediate acidification treatments. Spawning, which was unexpected due to the small size of the clams, was not observed for the pH -0.7 treatment, suggesting that the increased survival under acidified conditions may have been associated with a delay in the reproductive cycle of the clams. Future research about the impacts of ocean acidification on marine biodiversity should be extended to other types of biological and ecological processes, apart from biological calcification.