176 resultados para Estuarine chemistry
em Publishing Network for Geoscientific
Resumo:
A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.
Resumo:
Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.
Resumo:
Absorption of anthropogenic carbon dioxide by the world's oceans is causing mankind's 'other CO2 problem', ocean acidification. Although this process will challenge marine organisms that synthesize calcareous exoskeletons or shells, it is unclear how it will affect internally calcifying organisms, such as marine fish. Adult fish tolerate short-term exposures to CO2 levels that exceed those predicted for the next 300 years (~2,000 ppm), but potential effects of increased CO2 on growth and survival during the early life stages of fish remain poorly understood. Here we show that the exposure of early life stages of a common estuarine fish (Menidia beryllina) to CO2 concentrations expected in the world's oceans later this century caused severely reduced survival and growth rates. When compared with present-day CO2 levels (~400 ppm), exposure of M. beryllina embryos to ~1,000 ppm until one week post-hatch reduced average survival and length by 74% and 18%, respectively. The egg stage was significantly more vulnerable to high CO2-induced mortality than the post-hatch larval stage. These findings challenge the belief that ocean acidification will not affect fish populations, because even small changes in early life survival can generate large fluctuations in adult-fish abundance.
Resumo:
Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.
Resumo:
We investigated the effects of ocean acidification on juvenile clams Ruditapes decussatus (average shell length 10.24 mm) in a controlled CO2 perturbation experiment. The carbonate chemistry of seawater was manipulated by diffusing pure CO2, to attain two reduced pH levels (by -0.4 and -0.7 pH units), which were compared to unmanipulated seawater. After 75 days we found no differences among pH treatments in terms of net calcification, size or weight of the clams. The naturally elevated total alkalinity of local seawater probably contributed to buffer the effects of increased pCO2 and reduced pH. Marine organisms may, therefore, show diverse responses to ocean acidification at local scales, particularly in coastal, estuarine and transitional waters, where the physical-chemical characteristics of seawater are most variable. Mortality was significantly reduced in the acidified treatments. This trend was probably related to the occurrence of spontaneous spawning events in the control and intermediate acidification treatments. Spawning, which was unexpected due to the small size of the clams, was not observed for the pH -0.7 treatment, suggesting that the increased survival under acidified conditions may have been associated with a delay in the reproductive cycle of the clams. Future research about the impacts of ocean acidification on marine biodiversity should be extended to other types of biological and ecological processes, apart from biological calcification.
Resumo:
CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 µatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
Resumo:
Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ~0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.
Resumo:
The Arctic Ocean and its associated ecosystems face numerous challenges over the coming century. Increasing atmospheric CO2 is causing increasing warming and ice melting as well as a concomitant change in ocean chemistry ("ocean acidification"). As temperature increases it is expected that many temperate species will expand their geographic distribution northwards to follow this thermal shift; however with the addition of ocean acidification this transition may not be so straightforward. Here we investigate the potential impacts of ocean acidification and climate change on populations of an intertidal species, in this case the barnacle Semibalanus balanoides, at the northern edge of its range. Growth and development of metamorphosing post-larvae were negatively impacted at lower pH (pH 7.7) compared to the control (pH 8.1) but were not affected by elevated temperature (+4 °C). The mineral composition of the shells did not alter under any of the treatments. The combination of reduced growth and maintained mineral content suggests that there may have been a change in the energetic balance of the exposed animals. In undersaturated conditions more mineral is expected to dissolve from the shell and hence more energy would be required to maintain the mineral integrity. Any energy that would normally be invested into growth could be reallocated and hence organisms growing in lowered pH grow slower and end up smaller than individuals grown in higher pH conditions. The idea of reallocation of resources under different conditions of pH requires further investigation. However, there could be long-term implications on the fitness of these barnacles, which in turn may prevent them from successfully colonising new areas.
Resumo:
Increasing atmospheric carbon dioxide threatens to decrease pH in the world's oceans. Coastal and estuarine calcifying organisms of significant ecological and economical importance are at risk; however, several biogeochemical processes drive pH in these habitats. In particular, coastal and estuarine sediments are frequently undersaturated with respect to calcium carbonate due to high rates of organic matter remineralization, even when overlying waters are saturated. As a result, the post-larval stages of infaunal marine bivalves must be able to deposit new shell material in conditions that are corrosive to shell. We measured calcification rates on the hard clam, Mercenaria spp.,in 5 post-larval size classes (0.39, 0.56, 0.78, 0.98, and 2.90 mm shell height) using the alkalinity anomaly method. Acidity of experimental water was controlled by bubbling with air-CO2 blends to obtain pH values of 8.02, 7.64, and 7.41, corresponding to pCO2 values of 424, 1120, and 1950 µatm. These pH values are typical of those found in many near-shore terrigenous marine sediments. Our results show that calcification rate decreased with lower pH in all 5 size classes measured. We also found a significant effect of size on calcification rate, with the smaller post-larval sizes unable to overcome dissolution pressure. Increased calcification rate with size allowed the larger sizes to overcome dissolution pressure and deposit new shell material under corrosive conditions. Size dependency of pH effects on calcification is likely due to organogenesis and developmental shifts in shell mineralogy occurring through the post-larval stage. Furthermore, we found significantly different calcification rates between the 2 sources of hard clams we used for these experiments, most likely due to genotypic differences. Our findings confirm the susceptibility of the early life stages of this important bivalve to decreasing pH and reveal mechanisms behind the increased mortality in post-larval juvenile hard clams related to dissolution pressure, that has been found in previous studies.
Resumo:
Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.