50 resultados para Espace de Sobolev
em Publishing Network for Geoscientific
Resumo:
Recent studies of abyssal peridotites (Johnson et al., 1990, doi:10.1029/JB095iB03p02661), mid-ocean-ridge basalts (MORBs) (McKenzie, 1985, doi:10.1016/0012-821X(85)90001-9) and their entrained melt inclusions (Sobolev and Shimizu, 1993, doi:10.1038/363151a0; Humler and Whitechurch, 1988, doi:10.1016/0012-821X(88)90055-6) have shown that fractional melting of the upwelling sub-oceanic mantle produces magmas with a much wider range of compositions than erupted MORBs. In particular, it seems that strongly depleted primary magmas are routinely produced by melting beneath ridges (Johnson et al., 1990, doi:10.1029/JB095iB03p02661). The absence of strongly depleted melts as erupted lavas prompts the question of how long such magmas survive beneath ridges, before their distinctive compositions are concealed by mixing with more enriched magmas. Here we report mineral compositions from a unique suite of oceanic cumulates recovered from DSDP Site 334 (Aumento et al., doi:10.2973/dsdp.proc.37.1977), which indicate that the rocks crystallized from basaltic liquids that were strongly depleted in Na, Ti, Zr, Y, Sr and rare-earth elements relative to any erupted MORB. It thus appears that the magmatic plumbing system beneath the Mid-Atlantic Ridge permitted strongly depleted magmas to accumulate in a magma chamber and remain sufficiently isolated to produce cumulate rocks. Even so, spatial heterogeneity in the compositions of high-calcium pyroxenes suggests that in the later stages of solidification these rocks reacted with infiltrating enriched basaltic liquids.
Resumo:
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.
Resumo:
The major-element and most of the trace-element data from the different laboratories that contributed to the study of samples recovered during Leg 82 are presented in the following tables. The different basalt groups, identified on the basis of their chemical properties (major and trace elements), were defined from the data available on board the Glomar Challenger as the cruise progressed (see site chapters, all sites, this volume). Most of the data obtained since the end of the cruise and presented in these tables confirm the classification that was proposed by the shipboard party (see site chapters, all sites, this volume). Nevertheless, special mention should be made about Site 564. The shipboard party proposed a single chemical group at this site but noticed significant variations down the hole, mainly in trace-element data. However, the range of variation was small compared to the precision of the measurements. These variations were confirmed by the onshore studies (see papers in Part IV of this volume, especially Brannon's paper, partly devoted to this topic).
Resumo:
The compositions of abyssal glasses obtained on Leg 82 of the awGlomar Challenger and the MAPCO cruise of Jean Charcot have been investigated. Two main compositional groups of Atlantic glasses (A1 and A2) that are separated in space and time were identified. The distribution of these groups in the studied area allowed mapping of the transition zone from A1 to A2 between 30-35°N MAR. We infer that the compositional groups of abyssal glasses of the Atlantic and other oceans reflect the depth of separation of primary melts from the oceanic mantle. Specifically, the primary melt of Group A1 separates from the mantle at a depth of 30-60 km (spinel-peridotite facies) and those for Group A2 from a depth of 15-30 km (plagioclase-peridotite facies). Modifications of dynamic models of the ocean lithosphere are discussed.
Resumo:
The monograph presents results of comprehensive geological and geophysical studies carried out in 1973 and 1976 during Cruises 54 and 58 of R/V "Vityaz" in the Eastern Indian Ocean. On the base of obtained data a description of topography, magnetic and gravity fields, structure of the sedimentary series and deep crustal structure of the East Indian Ridge, Central, West Australian and Cocos Basins, the Sunda Trench has been done. Materials on petrography, petrochemistry and geochemistry of igneous rocks in the region have been summarized. New geological and geophysical information has been compared with with DSDP materials. Tectonics and geological history of the Eastern Indian Ocean are under consideration.