3 resultados para Environmental protection in India,

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal?ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Niño-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal?ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Greater understanding of the processes underlying biological invasions is required to determine and predict invasion risk. Two subspecies of olive (Olea europaea subsp. europaea and Olea europaea subsp. cuspidata) have been introduced into Australia from the Mediterranean Basin and southern Africa during the 19th century. Our aim was to determine to what extent the native environmental niches of these two olive subspecies explain the current spatial segregation of the subspecies in their non-native range. We also assessed whether niche shifts had occurred in the non-native range, and examined whether invasion was associated with increased or decreased occupancy of niche space in the non-native range relative to the native range. Location: South-eastern Australia, Mediterranean Basin and southern Africa. Methods: Ecological niche models (ENMs) were used to quantify the similarity of native and non-native realized niches. Niche shifts were characterized by the relative contribution of niche expansion, stability and contraction based on the relative occupancy of environmental space by the native and non-native populations. Results: Native ENMs indicated that the spatial segregation of the two subspecies in their non-native range was partly determined by differences in their native niches. However, we found that environmentally suitable niches were less occupied in the non-native range relative to the native range, indicating that niche shifts had occurred through a contraction of the native niches after invasion, for both subspecies. Main conclusions: The mapping of environmental factors associated with niche expansion, stability or contraction allowed us to identify areas of greater invasion risk. This study provides an example of successful invasions that are associated with niche shifts, illustrating that introduced plant species are sometimes readily able to establish in novel environments. In these situations the assumption of niche stasis during invasion, which is implicitly assumed by ENMs, may be unreasonable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The described studies were carried out in the eastern part of the sea during the end of the summer seasonal succession from September 1 to October 12, 1997. Concentration of chlorophyll a in the surface layer varied from 0.09 to 1.24 mg/m**3; it tended to increase in the southern regions (<74°N). Primary production in the water column (P_p) varied from 24 to 214 mg C/m**2/day and was on average 91 mg C/m**2/day. The low level of P_p seems to result from combination of physical and chemical environmental factors unfavorable for photosynthesis (e.g. deficiency of nutrients and low values of insolation and temperature) and intensive grazing of phytoplankton by zooplankton. The lower boundary of the photosynthetic layer in open waters was located at depth 60-75 m; irradiance there was 0.1-0.5% of incident irradiance. In deep-water regions (>200 m) the subsurface maximum of chlorophyll occurred in the layer at 20-40 m; usually this maximum resulted in formation of additional maxima of primary production.