7 resultados para Energy requirements

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic-pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C-enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C-enrichment of benthic mats with progressively increasing d13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C/m**2/day) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C/m**2/day), whereas benthic primary production alone (145 mg C/m**2/day) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient-limited high arctic ponds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Copepod species were sampled by different net types. Immediately after the hauls, samples were sorted to species and stages (16 species; females, males and C5 copepodids) according to Bradford-Grieve et al. (1999). Specimens were kept in temperature-controlled refrigerators for at least 12 h before they were used in experiments. Respiration rates of different copepod species were measured onboard by optode respirometry (for details see Köster et al., 2008) with a 10-channel optode respirometer (PreSens Precision Sensing Oxy-10 Mini, Regensburg, Germany) under simulated in situ conditions in temperature-controlled refrigerators. Experiments were run in gas-tight glass bottles (12-13 ml). For each set of experiments, two controls without animals were measured under exactly the same conditions to compensate for potential bias. The number of animals per bottle depended on the copepods size, stage and metabolic activity. Animals were not fed during the experiments but they showed natural species-specific movements. Immediately after the experiments, all specimens were deep-frozen at - 80 °C for later dry mass determination (after lyophilisation for 48 h) in the home lab. The carbon content (% of dry mass) of each species was measured by mass-spectrometry in association with stable isotope analysis and body dry mass was converted to units of carbon. For species without available carbon data, the mean value of all copepod species (44% dry mass) was applied. For the estimation of carbon requirements of copepod species, individual oxygen consumption rates were converted to carbon units, assuming that the expiration of 1 ml oxygen mobilises 0.44 mg of organic carbon by using a respiratory quotient (RQ) of 0.82 for a mixed diet consisting of proteins (RQ = 0.8-1.0), lipids (RQ = 0.7) and carbohydrates (RQ = 1.0) (Auel and Werner, 2003). The carbon ingestion rates were calculated using the energy budget and the potential maximum ingestion rate approach. To allow for physiological comparisons of respiration rates of deep- and shallow-living copepod species without the effects of ambient temperature and different individual body mass, individual respiration rates were temperature- (15°C, Q10=2) and size-adjusted. The scaling coefficient of 0.76 (R2=0.556) is used for the standardisation of body dry mass to 0.3 mg (mean dry mass of all analysed copepods), applying the allometric equation R= (R15°C/M0.76)×0.30.76, where R is respiration and M is individual dry mass in mg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification affects with special intensity Arctic ecosystems, being marine photosynthetic organisms a primary target, although the consequences of this process in the carbon fluxes of Arctic algae are still unknown. The alteration of the cellular carbon balance due to physiological acclimation to an increased CO2 concentration (1300 ppm) in the common Arctic brown seaweeds Desmarestia aculeata and Alaria esculenta from Kongsfjorden (Svalbard) was analysed. Growth rate of D. aculeata was negatively affected by CO2 enrichment, while A. esculenta was positively affected, as a result of a different reorganization of the cellular carbon budget in both species. Desmarestia aculeata showed increased respiration, enhanced accumulation of storage biomolecules and elevated release of dissolved organic carbon, whereas A. esculenta showed decreased respiration and lower accumulation of storage biomolecules. Gross photosynthesis (measured both as O2 evolution and 14C fixation) was not affected in any of them, suggesting that photosynthesis was already saturated at normal CO2 conditions and did not participate in the acclimation response. However, electron transport rate changed in both species in opposite directions, indicating different energy requirements between treatments and species specificity. High CO2 levels also affected the N-metabolism, and 13C isotopic discrimination values from algal tissue pointed to a deactivation of carbon concentrating mechanisms. Since increased CO2 has the potential to modify physiological mechanisms in different ways in the species studied, it is expected that this may lead to changes in the Arctic seaweed community, which may propagate to the rest of the food web.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Individual respiration rates were standardised to a mean copepod body mass and a temperature regime typical of the northern Benguela Current. These adjusted respiration rates revealed two different activity levels (active and resting) in copepodids C5 of Calanoides carinatus and females of Rhincalanus nasutus, which reduced their metabolism during dormancy by 82% and 62%, respectively. An allometric function (Imax) and an energy budget approach were performed to calculate ingestion rates. Imax generally overestimated the ingestion rates derived from the energy budget approach by >75%. We suggest that the energy budget approach is the more reliable approximation with a total calanoid copepod (mainly females) consumption of 78 mg C m-2 d-1 in neritic regions and 21 mg C m-2 d-1 in oceanic regions. The two primarily herbivorous copepods C. carinatus (neritic) and Nannocalanus minor (oceanic) contributed 83% and 5%, respectively, to total consumption by calanoid copepods. Locally, C. carinatus can remove up to 90% of the diatom biomass daily. In contrast, the maximum daily removal of dinoflagellate biomass by N. minor was 9%. These estimates imply that C. carinatus is an important primary consumers in the neritic province of the northern Benguela system, while N. minor has little grazing impact on phytoplankton populations further offshore. Data on energy requirements and total consumption rates of dominant calanoid copepods of this study are essential for the development of realistic carbon budgets and food-web models for the northern Benguela upwelling system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis was made of composition and content of nutrients, salts, particulate and dissolved organic matter, and various plankton groups in a series of samples collected by a 140-liter sampling bottle to depth up to 150 m at 4 equatorial stations between 97° and 154°W. Large and small phytoplankton, bacteria (aggregated and dispersed), heterotrophic flagellates, infusorians, radiolarians, foraminifers, fine filter-feeders, small and large, mostly herbivorous copepods, cyclopoids, predatory calanoids, and other predators were investigated separately. Trophic relations between these elements are established from personal and published data, and rate of their metabolism and some other physiological parameters are determined. Such functional characteristics as extent of satisfaction of food requirements of organisms belonging to various trophic groups, intensity of trophic relations, balance between production and consumption by individual elements of the community, ecological efficiency, and net and specific production of the groups distinguished, of individual trophic levels, of total zooplankton, and of the community as a whole are calculated. Variations of these characteristics along the equator with decreasing upwelling intensity are examined and their possible causes and mechanisms are discussed.