14 resultados para Electron energy loss spectroscopy

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With various low-temperature experiments performed on magnetic mineral extracts of marine sedimentary deposits from the Argentine continental slope near the Rio de la Plata estuary, a so far unreported style of partial magnetic self-reversal has been detected. In these sediments the sulphate-methane transition (SMT) zone is situated at depths between 4 and 8 m, where reductive diagenesis severely alters the magnetic mineral assemblage. Throughout the sediment column magnetite and ilmenite are present together with titanomagnetite and titanohematite of varying compositions. In the SMT zone (titano-)magnetite only occurs as inclusions in a siliceous matrix and as intergrowths with lamellar ilmenite and titanium-rich titanohematite, originating from high temperature deuteric oxidation within the volcanic host rocks. These abundant structures were visualized by scanning electron microscopy and analysed by energy dispersive spectroscopy. Warming of field-cooled and zero-field-cooled low-temperature saturation remanence displays magnetic phase transitions of titanium-rich titanohematite below 50 K and the Verwey transition of magnetite. A prominent irreversible decline characterizes zero-field cooling of room temperature saturation remanence. It typically sets out at ~210 K and is most clearly developed in the lower part of the SMT zone, where low-temperature hysteresis measurements identified ~210 K as the blocking temperature range of a titanohematite phase with a Curie temperature of around 240 K. The mechanism responsible for the marked loss of remanence is, therefore, sought in partial magnetic self-reversal by magnetostatic interaction of (titano-)magnetite and titanohematite. When titanohematite becomes ferrimagnetic upon cooling, its spontaneous magnetic moments order antiparallel to the (titano-)magnetite remanence causing an drastic initial decrease of global magnetization. The loss of remanence during subsequent further cooling appears to result from two combined effects (1) magnetic interaction between the two phases by which the (titano-)magnetite domain structure is substantially modified and (2) low-temperature demagnetization of (titano-)magnetite due to decreasing magnetocrystalline anisotropy. The depletion of titanomagnetite and superior preservation of titanohematite is characteristic for strongly reducing sedimentary environments. Typical residuals of magnetic mineral assemblages derived from basaltic volcanics will be intergrowths of titanohematite lamellae with titanomagnetite relics. Low-temperature remanence cycling is, therefore, proposed as a diagnostic method to magnetically characterize such alteration (palaeo-)environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of authigenic phosphorus (P) minerals in marine sediments typically focus on authigenic carbonate fluorapatite, which is considered to be the major sink for P in marine sediments and can easily be semi-quantitatively extracted with the SEDEX sequential extraction method. The role of other potentially important authigenic P phases, such as the reduced iron (Fe) phosphate mineral vivianite (Fe(II)3(PO4)*8H2O) has so far largely been ignored in marine systems. This is, in part, likely due to the fact that the SEDEX method does not distinguish between vivianite and P associated with Fe-oxides. Here, we show that vivianite can be quantified in marine sediments by combining the SEDEX method with microscopic and spectroscopic techniques such as micro X-ray fluorescence (µXRF) elemental mapping of resin-embedded sediments, as well as scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and powder X-ray diffraction (XRD). We further demonstrate that resin embedding of vertically intact sediment sub-cores enables the use of synchrotron-based microanalysis (X-ray absorption near-edge structure (XANES) spectroscopy) to differentiate between different P burial phases in aquatic sediments. Our results reveal that vivianite represents a major burial sink for P below a shallow sulfate/methane transition zone in Bothnian Sea sediments, accounting for 40-50% of total P burial. We further show that anaerobic oxidation of methane (AOM) drives a sink-switching from Fe-oxide bound P to vivianite by driving the release of both phosphate (AOM with sulfate and Fe-oxides) and ferrous Fe (AOM with Fe-oxides) to the pore water allowing supersaturation with respect to vivianite to be reached. The vivianite in the sediment contains significant amounts of manganese (~4-8 wt.%), similar to vivianite obtained from freshwater sediments. Our results indicate that methane dynamics play a key role in providing conditions that allow for vivianite authigenesis in coastal surface sediments. We suggest that vivianite may act as an important burial sink for P in brackish coastal environments worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature (LT) magnetic remanence and hysteresis measurements, in the range 300-5 K, were combined with energy dispersive spectroscopy (EDS) in order to characterize the magnetic inventory of strongly diagenetically altered sediments originating from the Niger deep-sea fan. We demonstrate the possibility of distinguishing between different compositions of members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series on a set of five representative samples, two from the upper suboxic and three from the lower sulfidic anoxic zone of gravity core GeoB 4901. Highly sensitive LT magnetic measurements were performed on magnetic extracts resulting in large differences in the magnetic behavior between samples from the different layers. This emphasizes that both Fe-Ti oxide phases occur in different proportions in the two geochemical environments. Most prominent are variations in the coercivity sensitive parameter coercive field (BC). At room-temperature (RT) hysteresis loops for all extracts are narrow and yield low coercivities (6-13 mT). With decreasing temperature the loops become more pronounced and wider. At 5 K an approximately 5-fold increase in BC for the suboxic samples contrasts a 20-25-fold increase for the samples from the anoxic zone. We demonstrate that this distinct increase in BC at LT corresponds to the increasing proportion of the Ti-rich hemoilmenite phase, while Fe-rich (titano-)magnetite dominates the magnetic signal at RT. This trend is also seen in the room-temperature saturation isothermal remanent magnetization (RT-SIRM) cycles: suboxic samples show remanence curves dominated by Fe-rich mineral phases while anoxic samples display curves clearly dominated by Ti-rich particles. We show that the EDS intensity ratios of the characteristic Fe Kalpha and Ti Kalpha lines of the Fe-Ti oxides may be used to differentiate between members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series. Furthermore it is possible to calculate an approximate composition for each grain if the intensity ratios of natural particles are linked to well-known standards. Thus, element spectra with high Fe/Ti intensity ratios were found to be rather typical of titanomagnetite while low Fe/Ti ratios are indicative of hemoilmenite. The EDS analyses confirm the LT magnetic results, Fe-rich magnetic phases dominate in the upper suboxic environment whereas Ti-rich magnetic phases comprise the majority of particles in the lower anoxic domain: The mineral assemblage of the upper suboxic environments is composed of magnetite (~19%), titanomagnetite (~62%), hemoilmenite (~17%) and ~2% other particles. In the lower anoxic sediments, reductive diagenetic alteration has resulted in more extensive depletion of the (titano-)magnetite phase, resulting in a relative enrichment of the hemoilmenite phase (~66%). In these strongly anoxic sediments stoichiometric magnetite is barely preserved and only ~5% titanomagnetite was detected. The remaining ~28% comprises Ti-rich particles such as pseudobrookite or rutile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Independent measurements of radiation, sensible and latent heat fluxes and the ground heat flux are used to describe the annual cycle of the surface energy budget at a high-arctic permafrost site on Svalbard. During summer, the net short-wave radiation is the dominant energy source, while well developed turbulent processes and the heat flux in the ground lead to a cooling of the surface. About 15% of the net radiation is consumed by the seasonal thawing of the active layer in July and August. The Bowen ratio is found to vary between 0.25 and 2, depending on water content of the uppermost soil layer. During the polar night in winter, the net long-wave radiation is the dominant energy loss channel for the surface, which is mainly compensated by the sensible heat flux and, to a lesser extent, by the ground heat flux, which originates from the refreezing of the active layer. The average annual sensible heat flux of -6.9 W/m**2 is composed of strong positive fluxes in July and August, while negative fluxes dominate during the rest of the year. With 6.8 W/m**2, the latent heat flux more or less compensates the sensible heat flux in the annual average. Strong evaporation occurs during the snow melt period and particularly during the snow-free period in summer and fall. When the ground is covered by snow, latent heat fluxes through sublimation of snow are recorded, but are insignificant for the average surface energy budget. The near-surface atmospheric stratification is found to be predominantly unstable to neutral, when the ground is snow-free, and stable to neutral for snow-covered ground. Due to long-lasting near-surface inversions in winter, an average temperature difference of approximately 3 K exists between the air temperature at 10 m height and the surface temperature of the snow.