11 resultados para Electron diffraction
em Publishing Network for Geoscientific
Resumo:
This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).
Resumo:
The hydrothermal deposits that we analyzed from Leg 70 are composed of ferruginous green clays and fragments of manganese-hydroxide crust. Data from X-ray diffraction, IR-spectroscopy, electron diffraction, and chemical analyses indicate that the hydrothermal green clays are composed of disordered mixed-layer phases of celadonite-nontronite. Electron diffraction shows that the parameters of the unit cells and the degree of three-dimensional ordering of mixed-layer phases with 80% celadonite interlayers are very close to Fe-micas of polymorphic modification IM-celadonite. In some sections, there is a tendency for the number of celadonite layers to increase with depth. The manganese-hydroxide crust fragments are predominantly composed of todorokite (buserite). An essential feature of hydrothermal accumulation is the sharp separation of Fe and Mn. Ba/Ti and Ba/Sr ratios are typical indicators of hydrothermal deposits. Sediments composing the hydrothermal mounds were deposited from moderately heated waters, which had extracted the components from solid basalts in environments where there were considerable gradients of temperature, eH, and pH. The main masses of Fe and Mn were deposited in the late Pleistocene. Postsedimentary alteration of deposited hydrothermal sediments led to their slight recrystallization and, in the green clays, to celadonitization. Further, factor analysis (by Varentsov) of chemical components from these hydrothermal deposits revealed paragenetic assemblages. Green clays corresponding to a definite factor assemblage were formed during the main stage of hydrothermal mineral formation. Manganese hydroxide and associated components were largely accumulated during an early stage and at the end of the main stage.
Resumo:
Todorokite is a very abundant manganese oxide mineral in many deposits in Cuba and has been noted from other localities. Six new analyses are givenl they lead to the approximate formula (Na, Ca, K, Mn+2)(Mn+4, Mn+2, Mg)6O12.3H2O. Electron diffraction data show the mineral to be orthorhombic, or monoclinic with beta near 90°. The x-ray powder pattern is indexed on a cell with a=0.75A, b=2.849A, c=9.59A, beta=90°. A differential thermal analysis curve is given.
Resumo:
Two Pacific Ocean manganese nodules, one from the ocean basin and one from a sea-mount, were examined in transmission electron microscopes at 100 and 650 kV. Of the many specimens examined, ten electron diffraction crystal spot patterns were identified. Sodium birnessite was observed six times and todorokite, Giavanoli's synthetic birnessite, hydrohausmanite and -Fe2O3 one time each. Ferric hydroxide was synthesized in the laboratory and shown to be the same as the primary iron mineral observed in the manganese nodules. The ferric hydroxide had a particle size range from 30 to 450 ?. Manganese oxide particles were frequently embedded in a mass of smaller ferric hydroxide particles.
(Table 1, page 376), Composition of manganese deposits from the Gulf of Aden and the Carlsberg Ridge
Resumo:
Iron-manganese nodules from the ocean floor have been extensively studied. But, because of the fine grain size of the particles of the nodules, structural identification by X-ray and electron diffraction techniques is difficult and the mineralogy of the iron oxide phase has not been well characterized. The observation of the Mössbauer spectrum-in which each nucleus absorbs gamma-rays independently-is not limited by particle size in the same way as is the observation of Bragg peaks in diffraction measurements, in which radiation must be scattered coherently from a large number of atoms. The magnetic hyperfine splitting in the Mössbauer spectrum of magnetic materials is affected, however, when the particles are so small that they become superparamagnetic. We describe here an investigation using the 57Fe Mössbauer effect of two iron-manganese nodules in which the iron oxide phase could not be detected by X-ray or electron diffraction.
Resumo:
The coastal deposits of Bonaire, Leeward Antilles, are among the most studied archives for extreme-wave events (EWEs) in the Caribbean. Here we present more than 400 electron spin resonance (ESR) and radiocarbon data on coarse-clast deposits from Bonaire's eastern and western coasts. The chronological data are compared to the occurrence and age of fine-grained extreme-wave deposits detected in lagoons and floodplains. Both approaches are aimed at the identification of EWEs, the differentiation between extraordinary storms and tsunamis, improving reconstructions of the coastal evolution, and establishing a geochronological framework for the events. Although the combination of different methods and archives contributes to a better understanding of the interplay of coastal and archive-related processes, insufficient separation, superimposition or burying of coarse-clast deposits and restricted dating accuracy limit the use of both fine-grained and coarse-clast geoarchives to unravel decadal- to centennial-scale events. At several locations, distinct landforms are attributed to different coastal flooding events interpreted to be of tsunamigenic origin. Coastal landforms on the western coast have significantly been influenced by (sub)-recent hurricanes, indicating that formation of the coarse-clast deposits on the eastern coast is likely to be related to past events of higher energy.