183 resultados para Electromagnetic Field Measurement
em Publishing Network for Geoscientific
Resumo:
This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.
Resumo:
New maps of mean monthly distribution of chlorophyll and primary production in the Kara Sea were compiled using joint processing of CZCS (1978-1986), SeaWiFS (1998-2005), and MODIS (2002-2006) satellite data and field measurements. The annual primary production of phytoplankton is estimated at 22.3 x 10**6 t C per year or 70 mg C/m**2 per day. Results of calculations of the organic carbon budget in the Kara Sea are presented.
Resumo:
In January/February 1985 a German-South African expedition had the opportunity to repeat measurements made by means of stakes planted in 1951 (Norwegian-British-Swedish Antarctic Expedition 1949-52) and 1966 (SANAE VII). Although the rediscovery of the old stakes had not been expected, the stakes could be identified and it was possible to derive movement vectors on the basis of old and heterogenic measurement data. The long-term movement rates established basically confirm and complement the values determined in 1951. The flow rates of 9,1 cm/a to 66.4 cm/a proved to be extremly low. Observations of the stake lengths showed very little accumulation in the fringe areas of the blue ice-field (ca. 0.7 to 2.6 cm/a snow/firn); on bare ice an ablation of 2.6 cm/a water equivalent (2.9 cm/a ice) was measured. The paper begins with a description of the essential conditions for the formation of the blue ice-field. Subsequently the measurements are explained in detail and their results are discussed.
Resumo:
A portable Fourier transform spectrometer (FTS), model EM27/SUN, was deployed onboard the research vessel Polarstern to measure the column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) by means of direct sunlight absorption spectrometry. We report on technical developments as well as data calibration and reduction measures required to achieve the targeted accuracy of fractions of a percent in retrieved XCO2 and XCH4 while operating the instrument under field conditions onboard the moving platform during a 6-week cruise on the Atlantic from Cape Town (South Africa, 34° S, 18° E; 5 March 2014) to Bremerhaven (Germany, 54° N, 19° E; 14 April 2014). We demonstrate that our solar tracker typically achieved a tracking precision of better than 0.05° toward the center of the sun throughout the ship cruise which facilitates accurate XCO2 and XCH4 retrievals even under harsh ambient wind conditions. We define several quality filters that screen spectra, e.g., when the field of view was partially obstructed by ship structures or when the lines-of-sight crossed the ship exhaust plume. The measurements in clean oceanic air, can be used to characterize a spurious air-mass dependency. After the campaign, deployment of the spectrometer alongside the TCCON (Total Carbon Column Observing Network) instrument at Karlsruhe, Germany, allowed for determining a calibration factor that makes the entire campaign record traceable to World Meteorological Organization (WMO) standards. Comparisons to observations of the GOSAT satellite and concentration fields modeled by the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) demonstrate that the observational setup is well suited to provide validation opportunities above the ocean and along interhemispheric transects.