39 resultados para Elastic backscatter lidar

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measurements, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. Anelastic strain recovery is a relatively new technique. Because use of the method has extended to a wider range of rock types, the literature has begun to include examples of rocks that contracted with time. Strong circumstantial evidence exists to suggest that core-sample contractions result from the slow diffusion of pore fluids from a preexisting microcrack structure that permits the rock to deflate at a greater rate than the expansion caused by anelastic strain recovery. Both expansions and contractions of the Leg 123 cores were observed. The basalt cores have clearly been intersected by an abundance of preexisting fractures, some of which pass right through the samples, but many are intercepted or terminate within the rock matrix. Thus, the behavior of the core samples will be influenced not only by the properties of the rock matrix between the fractures, but also by how these macro- and micro-scale fractures mutually interact. The strain-recovery curves recorded during Leg 123 for each of the 15 basalt core samples may reflect the result of two competing time dependent processes: anelastic strain recovery and pore pressure recovery. Were these the only two processes to influence the gauge responses, then one might expect that given the additional information required, established theoretical models might be used to determine consistent stress orientations and reliable stress magnitudes. However, superimposed upon these competing processes is their respective interaction with the preexisting fractures that intersect each core. Evidence from our experiments and observations suggests that these fractures have a dominating influence on the characteristics of the recovery curves and that their effects are complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressional (Vp) and shear (Vs) wave velocities have been measured to 10 kb in 32 cores of basalt from 14 Pacific sites of the Deep Sea Drilling Project. Both Vp and V s show wide ranges (3.70 to 6.38 km/sec for Vp and 1.77 to 3.40 km/sec for V s at 0.5 kb) which are linearly related to density and sea floor age, confirming earlier findings by Christensen and Salisbury of decreasing velocity with progressive submarine weathering based on studies of basalts from five sites in the Atlantic. Combined Pacific and Atlantic data give rates of decreasing velocity of -1.89 and -1.35 km/sec per 100 my for Vp and Vs respectively. New analyses of oceanic seismic refraction data indicate a decrease in layer 2 velocities with age similar to that observed in the laboratory, suggesting that weathering penetrates to several hundred meters in many regions and is largely responsible for the extreme range and variability of layer 2 refraction velocities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study multibeam angular backscatter data acquired in the eastern slope of the Porcupine Seabight are analysed. Processing of the angular backscatter data using the 'NRGCOR' software was made for 29 locations comprising different geological provinces like: carbonate mounds, buried mounds, seafloor channels, and inter-channel areas. A detailed methodology is developed to produce a map of angle-invariant (normalized) backscatter data by correcting the local angular backscatter values. The present paper involves detailed processing steps and related technical aspects of the normalization approach. The presented angle-invariant backscatter map possesses 12 dB dynamic range in terms of grey scale. A clear distinction is seen between the mound dominated northern area (Belgica province) and the Gollum channel seafloor at the southern end of the site. Qualitative analyses of the calculated mean backscatter values i.e., grey scale levels, utilizing angle-invariant backscatter data generally indicate backscatter values are highest (lighter grey scale) in the mound areas followed by buried mounds. The backscatter values are lowest in the inter-channel areas (lowest grey scale level). Moderate backscatter values (medium grey level) are observed from the Gollum and Kings channel data, and significant variability within the channel seafloor provinces. The segmentation of the channel seafloor provinces are made based on the computed grey scale levels for further analyses based on the angular backscatter strength. Three major parameters are utilized to classify four different seafloor provinces of the Porcupine Seabight by employing a semi-empirical method to analyse multibeam angular backscatter data. The predicted backscatter response which has been computed at 20° is the highest for the mound areas. The coefficient of variation (CV) of the mean backscatter response is also the highest for the mound areas. Interestingly, the slope value of the buried mound areas are found to be the highest. However, the channel seafloor of moderate backscatter response presents the lowest slope and CV values. A critical examination of the inter-channel areas indicates less variability within the estimated three parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the along strike variation of active bedrock fault scarps using long range terrestrial laser scanning (t-LiDAR) data in order to determine the distribution behaviour of scarp height and the subsequently calculate long term throw-rates. Five faults on Cretewhich display spectacular limestone fault scarps have been studied using high resolution digital elevation model (HRDEM) data. We scanned several hundred square metres of the fault system including the footwall, fault scarp and hanging wall of the investigated fault segment. The vertical displacement and the dip of the scarp were extracted every metre along the strike of the detected fault segment based on the processed HRDEM. The scarp variability was analysed by using statistical and morphological methods. The analysis was done in a geographical information system (GIS) environment. Results show a normal distribution for the scanned fault scarp's vertical displacement. Based on these facts, the mean value of height was chosen to define the authentic vertical displacement. Consequently the scarp can be divided into above, below and within the range of mean (within one standard deviation) and quantify the modifications of vertical displacement. Therefore, the fault segment can be subdivided into areas which are influenced by external modification like erosion and sedimentation processes. Moreover, to describe and measure the variability of vertical displacement along strike the fault, the semi-variance was calculated with the variogram method. This method is used to determine how much influence the external processes have had on the vertical displacement. By combining of morphological and statistical results, the fault can be subdivided into areas with high external influences and areas with authentic fault scarps, which have little or no external influences. This subdivision is necessary for long term throw-rate calculations, because without this differentiation the calculated rates would be misleading and the activity of a fault would be incorrectly assessed with significant implications for seismic hazard assessment since fault slip rate data govern the earthquake recurrence. Furthermore, by using this workflow areas with minimal external influences can be determined, not only for throw-rate calculations, but also for determining samples sites for absolute dating techniques such as cosmogenic nuclide dating. The main outcomes of this study include: i) there is no direct correlation between the fault's mean vertical displacement and dip (R² less than 0.31); ii) without subdividing the scanned scarp into areas with differing amounts of external influences, the along strike variability of vertical displacement is ±35%; iii) when the scanned scarp is subdivided the variation of the vertical displacement of the authentic scarp (exposed by earthquakes only) is in a range of ±6% (the varies depending on the fault from 7 to 12%); iv) the calculation of the long term throw-rate (since 13 ka) for four scarps in Crete using the authentic vertical displacement is 0.35 ± 0.04 mm/yr at Kastelli 1, 0.31 ± 0.01 mm/yr at Kastelli 2, 0.85 ± 0.06 mm/yr at the Asomatos fault (Sellia) and 0.55 ± 0.05 mm/yr at the Lastros fault.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior to the Deep Sea Drilling Project the composition of the oceanic crust could only be inferred from seismic-refraction and gravity data and the recovery of a wide variety of dredged rocks. Through the success of the Deep Sea Drilling Project, it is now clear that the top of oceanic Layer 2 usually consists of basalt. Several laboratory studies (e.g., Fox et al., 1972; Christensen and Shaw, 1970; Hyndman and Drury, 1976) have demonstrated that the seismic velocities of oceanic basalt are similar to velocities reported from refraction studies of Layer 2 and that the variability in Layer 2 velocities has many causes, the most important being fracturing and sea-floor alteration produced by the interaction of basalt and sea water (Christensen and Salisbury, 1973). To date, most reported measurements of velocities in oceanic basalts are from samples obtained from the main ocean basins. With the exception of an earlier study of velocities and related elastic properties of a suite of rocks from DSDP Sites 292, 293, 294, and 296 located in the Philippine Sea (Christensen et al., 1975; Fountain et al., 1975), elastic properties have not been determined for oceanic rocks from marginal basins. In this chapter compressional- and shear-wave velocities and elastic constants are reported at elevated confining pressures for basalt and volcanic breccias from Holes 447A, 448, and 448A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear-wave and compressional-wave velocities of 26 basalt samples collected at Site 504 during Deep Sea Drilling Project Legs 69 and 70 were measured at elevated confining pressures. The young basalts have higher velocities than average DSDP basalts, because of their lack of alteration. Measurements of sample porosity are combined with laboratory and in situ velocity measurements to yield estimates of total crustal porosity: 13% at the top of Layer 2, and very low porosity below a depth of 2.0 km.