8 resultados para Educational tests and measurements.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measurements, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. Anelastic strain recovery is a relatively new technique. Because use of the method has extended to a wider range of rock types, the literature has begun to include examples of rocks that contracted with time. Strong circumstantial evidence exists to suggest that core-sample contractions result from the slow diffusion of pore fluids from a preexisting microcrack structure that permits the rock to deflate at a greater rate than the expansion caused by anelastic strain recovery. Both expansions and contractions of the Leg 123 cores were observed. The basalt cores have clearly been intersected by an abundance of preexisting fractures, some of which pass right through the samples, but many are intercepted or terminate within the rock matrix. Thus, the behavior of the core samples will be influenced not only by the properties of the rock matrix between the fractures, but also by how these macro- and micro-scale fractures mutually interact. The strain-recovery curves recorded during Leg 123 for each of the 15 basalt core samples may reflect the result of two competing time dependent processes: anelastic strain recovery and pore pressure recovery. Were these the only two processes to influence the gauge responses, then one might expect that given the additional information required, established theoretical models might be used to determine consistent stress orientations and reliable stress magnitudes. However, superimposed upon these competing processes is their respective interaction with the preexisting fractures that intersect each core. Evidence from our experiments and observations suggests that these fractures have a dominating influence on the characteristics of the recovery curves and that their effects are complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical permeability and sediment consolidation measurements were taken on seven whole-round drill cores from Sites 1253 (three samples), 1254 (one sample), and 1255 (three samples) drilled during Ocean Drilling Program Leg 205 in the Middle America Trench off of Costa Rica's Pacific Coast. Consolidation behavior including slopes of elastic rebound and virgin compression curves (Cc) was measured by constant rate of strain tests. Permeabilities were determined from flow-through experiments during stepped-load tests and by using coefficient of consolidation (Cv) values continuously while loading. Consolidation curves and the Casagrande method were used to determine maximum preconsolidation stress. Elastic slopes of consolidation curves ranged from 0.097 to 0.158 in pelagic sediments and 0.0075 to 0.018 in hemipelagic sediments. Cc values ranged from 1.225 to 1.427 for pelagic carbonates and 0.504 to 0.826 for hemipelagic clay-rich sediments. In samples consolidated to an axial stress of ~20 MPa, permeabilities determined by flow-through experiments ranged from a low value of 7.66 x 10**-20 m**2 in hemipelagic sediments to a maximum value of 1.03 x 10**-16 m**2 in pelagic sediments. Permeabilities calculated from Cv values in the hemipelagic sediments ranged from 4.81 x 10**-16 to 7.66 x 10**-20 m**2 for porosities 49.9%-26.1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved procedure for lithium isotope analysis using Li3PO4 as the ion source has been investigated for application to geological samples. The 7Li/6Li ratio is measured using double rhenium filament thermal ionization mass spectrometry in which isotopic fractionation is minimized at high temperatures. The method produces a stable, high intensity Li+ ion beam that allows measurement of nanogram quantities of lithium. This results in a reduction in sample size of up to 1000 times relative to that required for the established Li2BO2+ method while maintaining a comparable precision of better than 1? (1 sigma). Replicate analyses of the NBS L-SVEC Li2CO3 standard yielded a mean value of 12.1047+/-0.0043 (n=21), which is close to the reported absolute value of 12.02+/-0.03. Intercalibration with a wide range of geological samples shows excellent agreement between the Li3PO4 and Li2BO2+ techniques. Replicate analyses of seawater and a fresh submarine basalt display high precision results that agree with previous measurements. Taking advantage of the high ionization efficiency of the phosphate ion source, we have made the first measurements of the lithium concentration (by isotope dilution) and isotopic composition of calcareous foraminiferal tests and other marine carbonates. Preliminary results indicate that substantial lithium exchange occurs between carbonate sediments and their interstitial waters. In addition, a possible link between lithium paleoceanography and paleoclimate during the last 1000 ky may be derived from planktonic foraminiferal tests. This highly sensitive technique can be applied in the examination of low lithium reservoirs and thereby provide insight into some fundamental aspects of lithium geochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inflatable drill-string packer was used at Site 839 to measure the bulk in-situ permeability within basalts cored in Hole 839B. The packer was inflated at two depths, 398.2 and 326.9 mbsf; all on-board information indicated that the packer mechanically closed off the borehole, although apparently the packer hydraulically sealed the borehole only at 398.2 mbsf. Two pulse tests were run at each depth, two constant-rate injection tests were run at the first set, and four were run at the second. Of these, only the constant-rate injection tests at the first set yielded a permeability, calculated as ranging from 1 to 5 * 10**-12 m**2. Pulse tests and constant-rate injection tests for the second set did not yield valid data. The measured permeability is an upper limit; if the packer leaked during the experiments, the basalt would be less permeable. In comparison, permeabilities measured at other Deep Sea Drilling Project and Ocean Drilling Program sites in pillow basalts and flows similar to those measured in Hole 839B are mainly about 10**-13 to 10**-14 m**2. Thus, if our results are valid, the basalts at Site 839 are more permeable than ocean-floor basalts investigated elsewhere. Based on other supporting evidence, we consider these results to be a valid measure of the permeability of the basalts. Temperature data and the geochemical and geotechnical properties of the drilled sediments all indicate that the site is strongly affected by fluid flow. The heat flow is very much less than expected in young oceanic basalts, probably a result of rapid fluid circulation through the crust. The geochemistry of pore fluids is similar to that of seawater, indicating seawater flow through the sediments, and sediments are uniformly underconsolidated for their burial depth, again indicating probable fluid flow. The basalts are highly vesicular. However, the vesicularity can only account for part of the average porosity measured on the neutron porosity well log; the remainder of the measured porosity is likely present as voids and fractures within and between thin-bedded basalts. Core samples, together with porosity, density, and resistivity well-log data show locations where the basalt section is thin bedded and probably has from 15% to 35% void and fracture porosity. Thus, the measured permeability seems reasonable with respect to the high measured porosity. Much of the fluid flow at Site 839 could be directed through highly porous and permeable zones within and between the basalt flows and in the sediment layer just above the basalt. Thus, the permeability measurements give an indication of where and how fluid flow may occur within the oceanic crust of the Lau Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied Mg/Ca in high-Mg, shallow-water benthic foraminifera in culture and in samples from natural environments, in order to evaluate the expression of latitudinal and seasonal temperature variability in Mg/Ca in their tests. We cultured Planoglabratella opercularis (d'Orbigny) and Quinqueloculina yabei Asano under controlled temperature (10°-25°C) and salinity (30-38) conditions. Both species show a linear correlation between Mg/Ca and temperature, but they differ in temperature sensitivity. Salinity does not significantly influence Mg/Ca. In the samples collected in nature, Mg/Ca and seawater temperatures are positively correlated, but there are more complexities than in the records for cultured specimens due to such factors as seasonal fluctuations in temperature. We conclude that Mg/Ca ratios in monospecific benthic foraminiferal samples may be used as a reliable temperature proxy, if the lifetime of the species is taken into account.