419 resultados para Edison National Historic Site (West Orange, N.J.)--Maps.
em Publishing Network for Geoscientific
Resumo:
Surveys of the areas surrounding the sites drilled on the Leg 92 19°S transect showed that sedimentation at all except the oldest site is dominated by calcium carbonate deposition. The sediments in the area of the oldest site, west of the Austral Fracture Zone, are being deposited beneath the calcium carbonate compensation depth and are dominated by terrigenous and metal-rich hydrogenous and hydrothermal sediments. The noncarbonate sediments in all of the areas east of the Austral Fracture Zone are dominated by hydrothermal sediment similar in composition to that presently being deposited at the East Pacific Rise. Although no biogenic microfossils were present in smear slides of the sediment, geochemical partitioning suggests that a remnant signal of siliceous biogenic deposition may be preserved, especially in gravity core (GC) 8, which was collected from a high heat flow zone near Site 600. The siliceous sediment may also result from the deposition of amorphous hydrothermal silica from the higher concentrations of pore water SiO2 characteristic of the upwelling waters. Sedimentation on the broad plateaus that characterize each area is quite uniform and suggests that sites on these plateaus will be broadly representative of pelagic sedimentation in the area.
Resumo:
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine-driven climate change. Location Middle to Late Miocene in the south-east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south-east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south-western African coast are the disappearance of Podocarpus-dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi-arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre-date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine-driven climate change in south-western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.
Resumo:
We have studied Ocean Drilling Program Site 1060 on the Blake Outer Ridge, which lies beneath the Gulf Stream. We focus on marine isotope stage 3, 60-25 thousand years before present (ka). Sea surface temperatures (SSTs) inferred both from foraminiferal fauna and alkenone ratios, as well as counts of iceberg melt-out debris and benthic stable isotope analyses, enable our record to be interpreted in terms of regional hydrographic changes as well as changing thermohaline circulation (THC). The observed SST record is consistent with the air temperature record from the Greenland ice cores. However, Site 1060 exhibits important differences in detail compared with the ice core record, and when compared to other sites within the North Atlantic, significant longitudinal differences emerge. At Site 1060 in the western Atlantic, all Greenland stadials (GS) whether associated with Heinrich events (HEs) or not, show a similar small amplitude of cooling; mean faunal-based SSTaug during GS is only 1.5°C colder than during Greenland interstadials (GIS). In addition, during GS the coldest SSTs are limited to apparently brief events. This is in contrast to several eastern Atlantic sites where HE stadials exhibit coolings that are enhanced by 2°C compared to other GS and where cold conditions are not restricted to cold pulses but cover 2 ka-long intervals. Furthermore, Site 1060 SSTs remained warm right through each interstadial, in contrast to the sustained and uniform cooling trend through interstadials that is consistently observed in Greenland, indicated by measurements of delta18O in ice.
Resumo:
Three bottom sediment cores were collected from the top, slope, and foot of a small topographic high located near the West European continental rise within the Porcupine abyssal plain at the battleship Bismark wreck site. Using high-efficient gas chromatography technique we determined content and examined molecular composition of n-alkane fraction of hydrocarbons and phenol compounds of lignin. n-Alkane and phenol concentrations in bottom sediments of all three cores were low both in values per unit mass of sediments and in organic matter composition that is typical for pelagic deposits of the World Ocean. They vary from 0.07 to 2.01 µg/g of dry sediment and from 0.0001 to 0.01% of TOC; phenol ranges are from 1.43 to 11.1 µg/g and from 0.03 to 0.6%. Non-uniform supply of terrigenous matter to the bottom under conditions of changes in sedimentation environment in different geological epochs is the principal reason for significant variations in n-alkane and lignin concentrations with depth in the cores. Lignin and its derivatives make the main contribution to formation of organic matter composition of the region in study. With respect to n-alkane and lignin concentrations organic matter of deposits of the West European Basin is composed of remains of higher plants and of autochtonous organic matter of marine flora; they have mixed terrigenous-autochtonous (terrigenous-planktonogenic) origin.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.
Resumo:
This report summarizes chemical and isotopic data from Ocean Drilling Program Leg 195 Site 1201. Pore water is divided into three intervals based on the rate of chemical change with depth. The shallowest interval is the red clay unit between 1.26 and 56.40 meters below seafloor (mbsf). In this section, there are overall decreases in the concentrations of alkalinity, boron, lithium, magnesium, potassium, sodium, and sulfate, whereas concentrations of calcium and chloride increase. Values of d18O and dD plot near standard mean ocean water to the right of the global meteoric water line (GMWL). Five samples from 72.60 and 83.33 mbsf yielded pore water for analyses. These samples help define a trend in the second interval, which is between 56.4 and 238.98 mbsf. Here, concentrations of magnesium, potassium, sodium, and sulfate decease, whereas concentrations of boron, calcium, and chloride increase. Concentrations of alkalinity and lithium remain roughly constant. The deepest interval, between 238.04 and 504.8 mbsf, has comparatively slower decreases of sodium and sulfate, increases of calcium and chloride, slow increases of alkalinity and lithium, and roughly constant concentrations of magnesium, potassium, and boron. Values of d18O and dD in pore water between 146.98 and 504.80 mbsf plot in a linear trend to the right of the GMWL.