18 resultados para Edessa marginalis
em Publishing Network for Geoscientific
Resumo:
Early Oligocene siliceous microfossils were recovered in the upper c. 193 m of the CRP-3 drillcore. Although abundance and preservation are highly variable through this section, approximately 130 siliceous microfossil taxa were identified, including diatoms, silicoflagellates, ebridians, chrysophycean cysts, and endoskeletal dinoflagellates. Well-preserved and abundant assemblages characterize samples in the upper c. 70 m and indicate deposition in a coastal setting with water depths between 50 and 200 m. Abundance fluctuations over narrow intervals in the upper c. 70 mbsf are interpreted to reflect environmental changes that were either conducive or deleterious to growth and preservation of siliceous microfossils. Only poorly-preserved (dissolved, replaced, and/or fragmented) siliceous microfossils are present from c. 70 to 193 mbsf. Diatom biostratigraphy indicates that the CRP-3 section down to c. 193 mbsf is early Oligocene in age. The lack of significant changes in composition of the siliceous microfossil assemblage suggests that no major hiatuses are present in this interval. The first occurrence (FO) of Cavitatus jouseanus at 48.44 mbsf marks the base of the Cavitatus jouseanus Zone. This datum is inferred to be near the base of Subchron C12n at c. 30.9 Ma. The FO of Rhizosolenia antarctica at 68.60 mbsf marks the base of the Rhizosolenia antarctica Zone. The FO of this taxon is correlated in deep-sea sections to Chron C13 (33.1 to 33.6 Ma). However, the lower range of R. antarctica is interpreted as incomplete in the CRP-3 drillcore, as it is truncated at an underlying interval of poor preservation: therefore, an age of c. 33.1 to 30.9 Ma is inferred for interval between c. 70 and 50 mbsf. The absence of Hemiaulus caracteristicus from diatom-bearing interval of CRP-3 further indicates an age younger than c. 33 Ma (Subchron C13n) for strata above c. 193 mbsf. Siliceous microfossil assemblages in CRP-3 are significantly different from the late Eocene assemblages reported CIROS-1 drillcore. The absence of H. caracteristicus, Stephanopyxis splendidus, and Pterotheca danica, and the ebridians Ebriopsis crenulata, Parebriopsis fallax, and Pseudoammodochium dictyoides in CRP-3 indicates that the upper 200 m of the CRP-3 drillcore is equivalent to part of the stratigraphic interval missing within the unconformity at c. 366 mbsf in CIROS-1.
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
This paper discusses the Paleobathymetric and paleoenvironmental history of the New Hebrides Island Arc and North d'Entrecasteaux Ridge during Cenozoic time based on benthic foraminiferal and sedimentological data. Oligocene and Pliocene to Pleistocene benthic foraminiferal assemblages from Sites 827, 828, 829, and 832 of Ocean Drilling Program (ODP) Leg 134 (Vanuatu) are examined by means of Q-mode factor analysis. The results of this analysis recognize the following bathymetrically significant benthic foraminiferal biofacies: (1) Globocassidulina subglobosa biofacies and Bulimina aculeata-Bolivinita quadrilatera biofacies representing the upper bathyal zone (600-1500 m); (2) Gavelinopsis praegeri-Cibicides wuellerstorfi biofacies, indicating the Pacific Intermediate Water (water depth between 1500 and 2400 m); (3) Tosaia hanzawai-Globocassidulina muloccensis biofacies, Valvulineria gunjii biofacies, and the Melonis barleeanus-Melonis sphaeroides biofacies, which characterize the lower bathyal zone; (4) the Nuttallides umbonifera biofacies, which characterizes the interval between the lysocline (approximately 3500 m) and the carbonate compensation depth (approximately 4500 m); and (5) the Rhabdammina abyssorum biofacies representing the abyssal zone below the carbonate compensation depth. Benthic foraminiferal patterns are used to construct Paleobathymetric and paleogeographic profiles of the New Hebrides Island Arc and North d'Entrecasteaux Ridge for the following age boundaries: late Miocene/Pliocene, early/late Pliocene, Pliocene/Pleistocene, and Pleistocene/Holocene.