114 resultados para Ecological label
em Publishing Network for Geoscientific
Resumo:
The Southern Marion Plateau (SMP) represents a vertical stacking of Miocene carbonate platform deposits. Two sites (1196 and 1199) were drilled on top of this plateau, penetrating a 663-m carbonate succession of bioclastic and reefal sedimentary bodies. The study focuses on the least dolomitized 410-m-thick upper part of the succession, which is middle to late Miocene in age. Sedimentological and paleontological studies were conducted at both sites in order to propose a paleoenvironmental model and its evolution through the Miocene age. Six main microfacies of possible environmental significance were defined using statistical multivariate analyses, based on the recognition and point counting of 24 biogenic components. Depositional environment reconstructions are proposed as well as the biosedimentary and the environmental evolution regarding seismic architectures, stratigraphy, biosedimentology, and microfacies analysis. The SMP platform mainly results from a vertical stacking of lens-shaped bodies in homoclinal to distally steepened ramp settings.
Resumo:
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different sce- narios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.
Resumo:
An abrupt global warming of 3-4°C occurred near the end of the Maastrichtian at 65.45-65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical-subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical-subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased delta13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.
Resumo:
The Neogene biostratigraphy presented here is based on the study of 230 samples through 737 m of pelagic sediment in Hole 806B. Sediment accumulation is interrupted only once in the uppermost lower Miocene (Zone N6), apparently coincident with a widespread deep-sea hiatus. Preservation of planktonic foraminifers through the section ranges from good to moderately poor. One hundred and ten species of planktonic foraminifers were identified; taxonomic notes on most species are included. All of the standard low-latitude Neogene foraminiferal zones are delineated, with the exceptions of Zones N8 and N9 because of a high first occurrence of Orbulina, and Zones N18 and N19 because of a high first occurrence of Sphaeroidinella dehiscens. Good agreement exists between the published account of the variation in planktonic foraminiferal species richness and the rates of diversification and turnover, and measurements of these evolutionary indexes in the record of Hole 806B. The global pattern of change in tropical/transitional species richness is paralleled in Hole 806B, with departures caused by either ecological conditions peculiar to the western equatorial Pacific or by inexactness in the estimation of million-year intervals in Hole 806B. Temporal changes in the relative abundance of taxa in the sediment assemblages, considered in light of their depth habitats, reveal a detailed picture of historical change in the structure of the upper water column over the Ontong Java Plateau. The dominance of surface dwellers (Paragloborotalia kugleri, P. mayeri, Dentoglobigerina altispira, Globigerinita glutinata, and Globigerinoides spp.) throughout the lower and middle Miocene is replaced by a more equitable distribution of surface (D. altispira and Globigerinoides spp.), intermediate (Globorotalia menardii plexus), and deep (Streptochilus spp.) dwellers in the late Miocene, following the closing of the Indo-Pacific Seaway and the initiation of large-scale glaciation in the Antarctic. The shoaling of the thermocline along the equator engendered by these climatic and tectonic events persisted through the Pliocene, when initial increases in the abundance of a new set of shallow, intermediate, and deep dwelling species of planktonic foraminifers coincide with the closing of the Panamanian Seaway.
Resumo:
The dataset is based on samples collected in the summer of 1998 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 69 samples (from 22 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160-250 m), upper slope (250-450 m), intermediate slope (450-800 m), and Derugin Basin (1450-1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats. Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area. As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.