4 resultados para Early marker
em Publishing Network for Geoscientific
Resumo:
Early Cretaceous dinoflagellate cysts were reinvestigated from nine deep-sea sites of the North and Central Atlantic. In general the zonation scheme developed for the western Central Atlantic (Habib, 1977; Habib and Drugg, 1983 ) can also be applied to the eastern Central Atlantic. Comparison with the probabilistic zonation of Gradstein et al. (1992) show, however, that the first occurrences of the important marker species Druggidium apicopaucicure, Druggidium deflandrei, Druggidium rhabdoreticulatum and Odontochitina operculata appear to occur slightly later in the eastern Central Atlantic in respect to nannofossils and benthic foraminifers. Muderongia neocomica has a shorter stratigraphic range in the eastern Central Atlantic than in the western Central Atlantic.
Resumo:
Calcareous nannoplankton biostratigraphy has been worked out in the eastern Mediterranean utilizing deep-sea sediments recovered from DSDP Leg 42A Sites 375 and 376. These two drill sites were located approximately 55 km west of Cyprus on the Florence Rise. Sediments, ranging in age from early Miocene (Helicosphaera ampliaperta Zone) through Holocene, contain sufficient age-diagnostic species to recognize essentially all of the lowlatitude nannoplankton zones described by Bukry, although regional, secondary marker species are needed to define some zonal boundaries. Reworked Cretaceous and Paleogene nannoplankton occur throughout the stratigraphic interval studied, but not in quantities large enough to mask indigenous species. Sedimentation rates at Sites 375 and 376 were highest in the late Miocene and late Pleistocene. Open-marine, warm-water species of discoasters are present in significant numbers throughout the Miocene and Pliocene. Earliest Pliocene assemblages contain numerous specimens of ceratoliths. Nannoplankton in post-Messinian sediments at the drill sites and the Zanclean stratotype at Capo Rossello, Sicily, indicate that the base of the Amaurolithus tricorniculatus Zone (base of Triquetrorhabdulus rugosus Subzone) corresponds with the Miocene-Pliocene boundary.
Resumo:
The rich and diverse dinocyst assemblages in Cores 162-985A-32X through 62X confirm the importance of these microfossils in unraveling the evolution of the Norwegian Sea. Cosmopolitan taxa, with well-documented stratigraphic ranges in northwest Europe, indicate the following ages: Sections 162-985A-62X-1 through 51X-2, Rupelian (early Oligocene); 50X-5, Oligocene, possibly Chattian; 48X-6, Aquitanian? (early Miocene); 48X-4 through 37X-5, Aquitanian (early Miocene); and 36X-5 through 32X-1, Burdigalian (early Miocene). This stratigraphic interpretation suggests that a major hiatus, which can be correlated with an apparently coeval hiatus at Site 643, occurs within the Chattian at Site 985. Several endemic dinocyst taxa with unusual morphology and restricted stratigraphic occurrences are present in Hole 985A and other Norwegian Sea sites, especially Site 643. By using Hole 985A data for control, the Oligocene-Miocene sediments can be correlated with some degree of confidence in the Norwegian Basin.
Resumo:
We refined the strontium isotope seawater curve for the Paleocene and early Eocene by analysis of samples recovered from the Walvis Ridge during Ocean Drilling Project (ODP) Leg 208. The highest 87Sr/86Sr values occurred in the earliest Paleocene at 65 Ma and generally decreased throughout the Paleocene, reaching minimum values between 53 and 51 Ma in the early Eocene before beginning to increase again at 50 Ma. A plausible explanation for the 87Sr/86Sr decrease between 65 and 51 Ma is increased rates of hydrothermal activity and/or the eruption and weathering of large igneous provinces (e.g., Deccan Traps and North Atlantic). Strontium isotope variations closely parallel sea level and benthic d18O changes during the late Paleocene and early Eocene, supporting previous studies linking tectonic reorganization and increased volcanism to high sea level, high CO2, and warm global temperatures.