23 resultados para Early Sampling
em Publishing Network for Geoscientific
Resumo:
Three complementary imaging techniques were used to describe a complex rosette-shaped microboring that penetrates the shells of brachiopods from the OrdovicianSilurian shallow marine limestones of Anticosti Island, Canada. Pyrodendrina cupra n. igen. and isp. is among the oldest dendrinid microborings and consists of shallow and deep penetrating canals that radiate from a central polygonal chamber. The affinity of the tracemaker is unknown, but a foraminiferal origin, as proposed for some dendrinid borings, is rejected. Combining microCT with traditional stereomicroscopy and SEM helped distinguish and quantify fine morphological features while maintaining contextual information of the microboring within the shell substrate. Different imaging techniques inherently bias the description of microborings. These biases must be accounted for as new methods in ichnotaxonomy are integrated with past research based on different methods.
Resumo:
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.
Resumo:
Quantitative distributions of calcareous nannofossils are analysed in the early-middle Pleistocene at the small Gephyrocapsa and Pseudoemiliania lacunosa zone transition in deep-sea cores from the Mediterranean Sea and North Atlantic Ocean (Ocean Drilling Program [ODP] Sites 977, 964 and 967, Deep Sea Drilling Project [DSDP] Site 607). The temporal and spatial mode of occurrence of medium-sized gephyrocapsids and reticulofenestrids has been examined to refine biostratigraphic constraints and evaluate possible relationships of stratigraphic patterns to environmental changes during a period of global climatic deterioration. The timing of bioevents has been calibrated using high-resolution sampling and correlation to the delta18O record in chronologically well-constrained sections. Newly identified events and ecostratigraphical signals enhance the stratigraphic resolution at the early-middle Pleistocene. The first occurrence (FO) of intermediate morphotypes between Pseudoemiliania and Reticulofenestra (Reticulofenestra sp.) is proposed as a reliable event within marine isotope stage (MIS) 35 or at the MIS 35/34 transition. The distribution of Reticulofenestra asanoi is characterized by rare and scattered occurrences in its lowest range, but the first common occurrence (FCO) is consistently identified at MIS 32 or 32/31; the last common occurrence (LCO) of the species is a distinctive event at MIS 23. In the studied interval, Gephyrocapsa omega dominates among medium-sized Gephyrocapsa. The FO of G. omega and contemporaneous re-entry of medium-sized gephyrocapsids at the lower-middle Pleistocene transition are diachronous between the Atlantic Ocean and Mediterranean Sea and from the western to eastern Mediterranean. In the Mediterranean, the LO of G. omega falls at MIS 15, insolation cycle 54 and is isochronous among the sites. Abundance fluctuations of G. omega show notable relations to early-middle Pleistocene climate changes; they considerably increase in abundance at the interglacial stages, suggesting warm water preferences. Gephyrocapsa omega temporarily disappears during the glacial MIS 22 and MIS 20. Above MIS 20, an impoverishment in G. omega and in the total abundance of medium-sized gephyrocapsids occurs. A decrease in abundance of G. omega is observed between the western Site 977 and the easternmost Site 967 in the Mediterranean Sea, as a possible response to high salinity and/or low nutrient content. Possible environmental influences on the distribution of R. asanoi and of Reticulofenestra sp. are discussed.
Resumo:
Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
Resumo:
Sparse terrestrial palynomorphs (spores and pollen) were recovered from glacigene Lower Miocene and Oligocene core samples from the Cape Roberts Project (CRP) drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Rarity of palynomorphs probably results from the spares periglacial vegetation in the surrounding landscape at the time of deposition, as well as dilution from rapid sediment accumulation. The Miocene and Late Oligocene vegetation is interpreted as including herb-moss tundra with low-growing woody plants (including Nothofagus and podocarp conifers) in more protected areas, similar to that encountered in the Miocene of CRP-1. Species richness and numbers of specimens increase downhole, a trend that begins very gradually below ~307 mbsf, and increases below ~443 mbsf through the Early Oligocene. These lower assemblages reflect low diversity woody vegetation dominated by several species of Nofhofagus and podocarps, growing in somewhat milder conditions, though still cold temperate to periglacial in the Early Oligocene. The CRP-2/2A core provides new biostratigraphical information, such as the First Appearance Datums (FADS) of Tricolpites sp. a near the Oligocene/Miocene boundary, and Marchantiaceae in the Early/Late Oligocene transition: these are taxa that along with N. lachlaniae, Coptospora spp. and Podocarpidites sp.b characterize assemblages recovered from outcrops of the Pliocene Sirius Group in the Transantarctic Mountains. Some elements of the extremely hardy periglacial tundra vegetation that survived in Antarctica into the Pliocene had their origin in the Oligocene during a time of deteriorating (colder, drier) climatic conditions. The CRP results highlight the long persistence of this tundra vegetation, through approximately 30 million years of dynamically changing climatic conditions. Rare Jurassic and more common Permian-Triassic spores and pollen occur sporadically throughout the core. These are derived from Jurassic Ferrar Group sediments, and from the Permian-Triassic Victoria Group, upper Beacon Supergroup. Higher frequencies of reworked Beacon palynomorphs and coaly organic matter below ~307 mbsf indicate greater erosion of the Beacon Supergroup for this lower part of the core. A color range from black, severely metamorphosed specimens, to light-colored, yellow (indicating low thermal alteration), reworked Permian palynomorphs, indicates local provenance in the dolerite-intruded Beacon strata of the Transantarctic Mountains, as well as areas (now sub-ice) of Beacon strata with little or no associated dolerite well inland (cratonwards) of the present Transantarctic Mountains.
Resumo:
The clay mineral assemblages of upper Eocene to lower Miocene sediments recovered at the CIROS-1 and MSSTS-1 drill sites on the McMurdo Sound shelf, Antarctica, were analyzed in order to reconstruct the Cenozoic Antarctic paleoclimate and ice dynamics. The assemblages are dominated by smectite and illite, with minor amounts of chlorite and kaolinite. The highest smectite amounts and best smectite crystallinities occur in the upper Eocene part of CIROS-1, below 425-445 mbsf. They indicate that during their deposition, chemical weathering conditions prevailed on the nearby continent. Large parts of East Antarctica were probably ice-free at that time, but some glaciers reached the sea and contributed to the glaciomarine sedimentation. In contrast, only minor total amounts of smectite are present in Oligocene and younger sediments due to the shift to mainly physical weathering on an ice-covered Antarctic continent. However, relative smectite percentages rise to more than 60% during two late Oligocene intervals (ca. 27.5-26.2 and 25.0-24.5 Ma) and during one early Miocene interval starting at ca. 23.3 Ma. These intervals are characterized by ice masses coming probably from the south, where volcanic rocks acted as a source, as also indicated by the composition of the sand and gravel fractions. During the other intervals, the ice came from the west, where the physical erosion of basement rocks and sedimentary rocks of the Beacon Supergroup in the Transantarctic Mountains provided high illite concentrations. Because the two drill sites are only 4 km apart, their clay mineral records can be correlated. This led to a new interpretation of the Oligocene paleomagnetic data of the MSSTS-1 site and to a more detailed lithostratigraphic correlation of the Miocene parts of the cores.
Resumo:
The Late Miocene-Early Pliocene paleoclimatic history has been evaluated for a deep drilled sediment sequence at Deep Sea Drilling Project Site 281 and a shallow water marine sediment sequence at Blind River, New Zealand, both of which lay within the Subantarctic water mass during the Late Miocene. A major, faunally determined, cooling event within the latest Miocene at Site 281 and Blind River coincides with oxygen isotopic changes in benthonic foraminiferal composition at DSDP Site 284 considered by Shackleton and Kennett (1975) to indicate a significant increase in Antarctic ice sheet volume. However, at Site 281 benthonic foraminiferal oxygen isotopic changes do not record such a large increase in Antarctic ice volume. It is possible that the critical interval is within an unsampled section (no recovery) in the latest Miocene. Two benthonic oxygen isotopic events in the Late Miocene (0.5 ? and 1 ? in the light direction) may be useful as time-stratigraphic markers. A permanent, negative, carbon isotopic shift at both Site 281 and Blind River allows precise correlations to be made between the two sections and to other sites in the Pacific region. Close interval sampling below the carbon shift at Site 281 revealed dramatic fluctuations in surface-water temperatures prior to a latest Miocene interval of refrigeration (Kapitean) and a strong pulse of dissolution between 6.6 and 6.2 +/- 0.1 m.y. which may be related to a fundamental geochemical change in the oceans at the time of the carbon shift (6.3-6.2 m.y.). No similar close interval sampling at Blind River was possible because of a lack of outcrop over the critical interval. Paleoclimatic histories from the two sections are very similar. Surface water temperatures and Antarctic ice-cap volume appear to have been relatively stable during the late Middle-early Late Miocene (early-late Tongaporutuan). By 6.4 m.y. cooler conditions prevailed at Site 281. Between 6.3 and 6.2 -+ 0.1 m.y. the carbon isotopic shift occurred followed, within 100,000 yr, by a distinct shallowing of water depths at Blind River. The earliest Pliocene (Opoitian) is marked by increasing surface-water temperatures.
Resumo:
A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.