4 resultados para EROD activity

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether the hepatic cytochrome P450 1A activity (measured as 7-ethoxyresorufin-O-deethylase (EROD)) and plasma thyroid hormone and liver retinoid concentrations were explained by liver and blood levels of halogenated organic contaminants (HOCs) in free-ranging breeding northern fulmars (Fulmarus glacialis) from Bjornoya in the Norwegian Arctic. Hepatic EROD activity and liver levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were positively correlated, suggesting that hepatic EROD activity is a good indicator for dioxin and dioxin-like HOC exposure in breeding northern fulmars. There were not found other strong relationships between HOC concentrations and hepatic EROD activity, plasma thyroid or liver retinoid concentrations in the breeding northern fulmars. It is suggested that the HOC levels found in the breeding northern fulmars sampled on Bjornoya were too low to affect plasma concentrations of thyroid hormones and liver levels of retinol and retinyl palmitate, and that hepatic EROD activity is a poor indicator of polychlorinated biphenyl (PCB) and pesticide exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study assessed and compared the oxidative and reductive biotransformation of brominated flame retardants, including established polybrominated diphenyl ethers (PBDEs) and emerging decabromodiphenyl ethane (DBDPE) using an in vitro system based on liver microsomes from various arctic marine-feeding mammals: polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat as a mammalian model species. Greater depletion of fully brominated BDE209 (14-25% of 30pmol) and DBDPE (44-74% of 90pmol) occurred in individuals from all species relative to depletion of lower brominated PBDEs (BDEs 99,100, and 154; 0-3% of 30pmol). No evidence of simply debrominated metabolites was observed. Investigation of phenolic metabolites in rat and polar bear revealed formation of two phenolic, likely multiply debrominated, DBDPE metabolites in polar bear and one phenolic BDE154 metabolite in polar bear and rat microsomes. For BDE209 and DBDPE, observed metabolite concentrations were low to nondetectable, despite substantial parent depletion. These findings suggested possible underestimation of the ecosystem burden of total-BDE209, as well as its transformation products, and a need for research to identify and characterize the persistence and toxicity of major BDE209 metabolites. Similar cause for concern may exist regarding DBDPE, given similarities of physicochemical and environmental behavior to BDE209, current evidence of biotransformation, and increasing use of DBDPE as a replacement for BDE209.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arctic seabirds are exposed to a wide range of halogenated organic contaminants (HOCs). Exposure occurs mainly through food intake, and many pollutants accumulate in lipid-rich tissues. Little is known about how HOCs are biotransformed in arctic seabirds. In this study, we characterized biotransformation enzymes in chicks of northern fulmars (Fulmarus glacialis) and black-legged kittiwakes (Rissa tridactyla) from Kongsfjorden (Svalbard, Norway). Phase I and II enzymes were analyzed at the transcriptional, translational and activity levels. For gene expression patterns, quantitative polymerase chain reactions (qPCR), using gene-sequence primers, were performed. Protein levels were analyzed using immunochemical assays of western blot with commercially available antibodies. Liver samples were analyzed for phase I and II enzyme activities using a variety of substrates including ethoxyresorufin (cytochrome (CYP)1A1/1A2), pentoxyresorufin (CYP2B), methoxyresorufin (CYP1A), benzyloxyresorufin (CYP3A), testosterone (CYP3A/CYP2B), 1-chloro-2,4-nitrobenzene (CDNB) (glutathione S-transferase (GST)) and 4-nitrophenol (uridine diphosphate glucuronyltransferase (UDPGT)). In addition, the hydroxylated (OH-) polychlorinated biphenyls (PCBs) were analyzed in the blood, liver and brain tissue, whereas the methylsulfone (MeSO2-) PCBs were analyzed in liver tissue. Results indicated the presence of phase I (CYP1A4/CYP1A5, CYP2B, and CYP3A) and phase II (GST and UDPGT) enzymes at the activity, protein and/or mRNA level in both species. Northern fulmar chicks had higher enzyme activity than black-legged kittiwake chicks. This in combination with the higher XOH-PCB to parent PCB ratios suggests that northern fulmar chicks have a different biotransformation capacity than black-legged kittiwake chicks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.