6 resultados para Dynamics of structures
em Publishing Network for Geoscientific
Resumo:
Fifteen lengths of Leg 59 cores (primarily from Hole 451 as well as from Holes 447A and 448A) exhibiting macroscopic faults were selected by Dr. R. B. Scott (Co-Chief Scientist, Leg 59) to help us initiate this petrofabric analysis. We proposed to (1) determine what dynamically useful deformation features might be associated with the faults, and (2) infer from these features as much as possible about the physical environment of the deformation (effective pressure, differential stress, temperature, and strain rate), the orientation and relatively magnitudes of the principal stresses at the time of deformation, and the degree of induration of the rocks at the time of deformation. The cores, mainly from Hole 451, had been slabbed on board ship with respect to the trace of bedding so that each cut surface contains the true bedding dip-direction. In general, the cores from Hole 451 are largely calcareous, lithic and vitric, brecciated tuffs, whereas those from Holes 447A and 448A are basalts or basalt breccias.
Resumo:
As part of the PeECE II mesocosm project, we investigated the effects of pCO2 levels on the initial step of heterotrophic carbon cycling in the surface ocean. The activities of microbial extracellular enzymes hydrolyzing 4 polysaccharides were measured during the development of a natural phytoplankton bloom under pCO2 conditions representing glacial (190 µatm) and future (750 µatm) atmospheric pCO2. We observed that (1) chondroitin hydrolysis was variable throughout the pre-, early- and late-bloom phases, (2) fucoidanase activity was measurable only in the glacial mesocosm as the bloom developed, (3) laminarinase activity was low and constant, and (4) xylanase activity declined as the bloom progressed. Concurrent measurements of microbial community composition, using denaturing-gradient gel electrophoresis (DGGE), showed that the 2 mesocosms diverged temporally, and from one another, especially in the late-bloom phase. Enzyme activities correlated with bloom phase and pCO2, suggesting functional as well as compositional changes in microbial communities in the different pCO2 environments. These changes, however, may be a response to temporal changes in the development of phytoplankton communities that differed with the pCO2 environment. We hypothesize that the phytoplankton communities produced dissolved organic carbon (DOC) differing in composition, a hypothesis supported by changing amino acid composition of the DOC, and that enzyme activities responded to changes in substrates. Enzyme activities observed under different pCO2 conditions likely reflect both genetic and population-level responses to changes occurring among multiple components of the microbial loop.