4 resultados para Dynamic range
em Publishing Network for Geoscientific
                                
Resumo:
In this study multibeam angular backscatter data acquired in the eastern slope of the Porcupine Seabight are analysed. Processing of the angular backscatter data using the 'NRGCOR' software was made for 29 locations comprising different geological provinces like: carbonate mounds, buried mounds, seafloor channels, and inter-channel areas. A detailed methodology is developed to produce a map of angle-invariant (normalized) backscatter data by correcting the local angular backscatter values. The present paper involves detailed processing steps and related technical aspects of the normalization approach. The presented angle-invariant backscatter map possesses 12 dB dynamic range in terms of grey scale. A clear distinction is seen between the mound dominated northern area (Belgica province) and the Gollum channel seafloor at the southern end of the site. Qualitative analyses of the calculated mean backscatter values i.e., grey scale levels, utilizing angle-invariant backscatter data generally indicate backscatter values are highest (lighter grey scale) in the mound areas followed by buried mounds. The backscatter values are lowest in the inter-channel areas (lowest grey scale level). Moderate backscatter values (medium grey level) are observed from the Gollum and Kings channel data, and significant variability within the channel seafloor provinces. The segmentation of the channel seafloor provinces are made based on the computed grey scale levels for further analyses based on the angular backscatter strength. Three major parameters are utilized to classify four different seafloor provinces of the Porcupine Seabight by employing a semi-empirical method to analyse multibeam angular backscatter data. The predicted backscatter response which has been computed at 20° is the highest for the mound areas. The coefficient of variation (CV) of the mean backscatter response is also the highest for the mound areas. Interestingly, the slope value of the buried mound areas are found to be the highest. However, the channel seafloor of moderate backscatter response presents the lowest slope and CV values. A critical examination of the inter-channel areas indicates less variability within the estimated three parameters.
                                
Resumo:
The efficiency of the biological pump of carbon to the deep ocean depends largely on the biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here, we improve understanding of phytoplankton size structure impacts on particle export, remineralization and transfer. Particulate organic carbon (POC) flux observations from sediment traps and 234Th are compiled across the global ocean. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed, and sinking velocities are calculated to align surface variables with POC flux at depth. Parameters that characterize POC flux vs. depth (export flux ratio, labile fraction, remineralization length scale) are then fit to the aligned dataset. Times of the year dominated by different size compositions are identified and fit separately in regions of the ocean where phytoplankton cell size showed enough dynamic range over the annual cycle. Considering all data together, our findings support the paradigm of high export flux but low transfer efficiency in more productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.
                                
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.
                                
Resumo:
Dynamic penetrometer data obtained with the Nimrod penetrometer (MARUM). Data is presented as (i) penetration depth (including for different layers if present), (ii) measured deceleration and (iv) estimated quasi-static bearing capacity including range of uncertainty due to the processing method. Lat/Long coordinates are given.