9 resultados para Dynamic System Optimum

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grain-size, mineral and chemical compositions of suspended particulate matter (SPM) from waters of the Severnaya (North) Dvina River mouth area during the spring flood in May 2004 is studied. Data published on composition of riverine SPM in the White Sea basin are very poor. The spring flood period when more than half of annual runoff is supplied from the river to the sea in during short time is understood more poorly. The paper considers comparison results of the grain size compositions of SPM and bottom sediments. Data of laser and hydraulic techniques of grain size analysis are compared. Short-period variations of SPM concentration and composition representing two diurnal peaks of the tide level are studied. It is found that SPM is mainly transferred during the spring flood as mineral aggregates up to 40 µm diameter. Sandy-silty fraction of riverine SPM settles in delta branches and channels, and bulk of clay-size material is supplied to the sea. Mineral and chemical compositions of SPM from the North Dvina River are determined by supply of material from the drainage basin. This material is subjected to intense mechanic separation during transfer to the sea. Key regularities of formation of mineral composition of SPM during the flood time are revealed. Effect of SPM grain size composition on distribution of minerals and chemical elements in study in the dynamic system of the river mouth area are characterized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The middle Miocene Climatic Optimum (17-15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal d11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle Miocene (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (~1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350-400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200-260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared particle data from a moored video camera system with sediment trap derived fluxes at ~1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40-1200 mg m**-2 d**-1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm**3 l**-1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d**-1, indicating a close and fast coupling between dust input and sedimentation of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most global ocean models are based on the assumption of a "steady state" ocean. Here, we investigate the validation of this hypothesis for the anthropized Mediterranean Sea. In order to do so, we calculated the mixing coefficients of the water masses detected in this sea via an optimum multiparameter analysis referred to as the MIX approach, using data from the BOUM (2008) and MedSeA (2013) cruises. The comparison of the mixing coefficients of each water mass, between 2008 and 2013, indicates that some of their proportions have significantly changed. Surface water mass proportions did not change significantly (Delta0.05-0.1), while intermediate and deep water mass mixing coefficients of both Eastern and Western basins were significantly modified (~Delata 0.35). This study clearly shows that the Mediterranean seawater is not in a "steady state".