7 resultados para Duck Field Research Facility, Duck, N.C.
em Publishing Network for Geoscientific
Resumo:
Late Campanian and Maastrichtian benthic foraminifers are recorded from 12 samples from Ocean Drilling Program (ODP) Leg 183, Cores 183-1138A-52R through 63R (487.3-602.4 meters below seafloor), Kerguelen Plateau, Indian Ocean, and Danian benthics from one sample in the same section. The entire late Maastrichtian foraminifer fauna is noted from a dredge sample 220 km to the north. The structure of the fauna is compared with the Cenomanian-Turonian of the nearby Eltanin core E54-7. Faunas are reviewed in terms of planktonic percentage, composition, epifaunal/infaunal ratios, and dominance/diversity indices. The region was in the cool Austral Faunal Province through the Campanian-Maastrichtian and was probably warmer in the Cenomanian-Turonian. The ODP section is now 1600 meters below sea level and has subsided several hundred meters since deposition. Its fauna is dominated by epifaunal species suggesting little influence of upwelling. The dredge location has subsided little. Its fauna has a high infaunal content consistent with significant influence of upwelling near the plateau edge. The dominant benthic species remain constant through the ODP Cretaceous section, but subdominance changes, and the section is divided into three informal zones based on dominance/subdominance characteristics of the benthic fauna. Brief taxonomic comments are made on several species and some are figured.
Resumo:
Cores, submarine photography and dredges described in this report were taken during the R/V Eltanin Cruise 5 in 1962 by the Department of Geology, Florida State University. Cores and dredges were recovered for 31 stations and are available at the Antarctic Research Facility, Florida State University for sampling and study.
Resumo:
Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.
Resumo:
Passive chambers are used to examine the impacts of summer warming in Antarctica but, so far, impacts occurring outside the growing season, or related to extreme temperatures, have not been reported, despite their potentially large biological significance. In this review, we synthesise and discuss the microclimate impacts of passive warming chambers (closed, ventilated and Open Top Chamber-OTC) commonly used in Antarctic terrestrial habitats, paying special attention to seasonal warming, during the growing season and outside, extreme temperatures and freeze-thaw events. Both temperature increases and decreases were recorded throughout the year. Closed chambers caused earlier spring soil thaw (8-28 days) while OTCs delayed soil thaw (3-13 days). Smaller closed chamber types recorded the largest temperature extremes (up to 20°C higher than ambient) and longest periods (up to 11 h) of above ambient extreme temperatures, and even OTCs had above ambient temperature extremes over up to 5 consecutive hours. The frequency of freeze-thaw events was reduced by ~25%. All chamber types experienced extreme temperature ranges that could negatively affect biological responses, while warming during winter could result in depletion of limited metabolic resources. The effects outside the growing season could be as important in driving biological responses as the mean summer warming. We make suggestions for improving season-specific warming simulations and propose that seasonal and changed temperature patterns achieved under climate manipulations should be recognised explicitly in descriptions of treatment effects.
Resumo:
We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3? was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3?/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U/[?g chl a] (mean 4.1). Measurements of short-term C-fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half-saturation constant for inorganic carbon uptake (K1/2) of ~380 ?M. Comparison of our early springtime results with published data from late-season Ross Sea assemblages showed that neither HCO3? utilization nor eCA activity was significantly correlated to ambient CO2 levels or phytoplankton taxonomic composition. We did, however, observe a strong negative relationship between surface water pCO2 and short-term 14C-fixation rates for the early season survey. Direct incubation experiments showed no statistically significant effects of pCO2 (10 to 80 Pa) on relative HCO3? utilization or eCA activity. Our results provide insight into the seasonal regulation of C uptake by Ross Sea phytoplankton across a range of pCO2 and phytoplankton taxonomic composition.
Resumo:
Twenty-eight core catcher samples were provided to the author by the shipboard party for evaluation of fossil diatoms. Samples are from Ocean Drilling Program Leg 207 Holes 1257A, 1257B, 1257C, and 1258A. The samples range from 50 to 112 meters below the seafloor (mbsf) at Site 1257 and from ~22 to 60 mbsf at Site 1258. At Site 1257, samples range in age from middle Eocene (foraminifer Zone P14-13) to late Paleocene (mid-foraminifer Zone P4). At Site 1258, the samples range from middle Eocene (foraminifer Zone P11) to early Eocene (foraminifer Zone P5) according to the preliminary biostratigraphic reports (Erbacher, Mosher, Malone, et al., 2004, doi:10.2973/odp.proc.ir.207.2004). All samples were processed at Florida State University Antarctic Research Facility. Treatment included acidization and sieving through stacked 38- and 63-µm sieves. Strew slides were made from each fraction and the catcher pan. A Zeiss Photoscope II microscope was used for examination of the prepared slides. Samples from Holes 1257A, 1257B, and 1257C showed that most of the samples are barren of siliceous microfossils. Only a few radiolarians and fragments of radiolarians were observed.
Resumo:
In this article, methods and results are presented for the analysis of the behaviour of an alpine glacier, the Vernagtferner, Oetztal Alps, Austria. Since 1601, the advances and retreats of Vernagtferner are documented and analysed with rising temporal and spa- tial precision. Early pictorial documents (from 1601 to 1844), high-resolution maps since 1889, mass balance investigations with the glaciological method since 1964 and meteorological-hydrological records and models since 1974 deliver, with increasing temporal resolution, a consistent pattern of the continual ice loss of this glacier over more than 30 years.