9 resultados para Dry period

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selected multi-proxy and accurately dated marine and terrestrial records covering the past 2000 years in the Iberian Peninsula (IP) facilitated a comprehensive regional paleoclimate reconstruction for the Medieval Climate Anomaly (MCA: 900-1300 AD). The sequences enabled an integrated approach to land-sea comparisons and, despite local differences and some minor chronological inconsistencies, presented clear evidence that the MCA was a dry period in the Mediterranean IP. It was a period characterized by decreased lake levels, more xerophytic and heliophytic vegetation, a low frequency of floods, major Saharan eolian fluxes, and less fluvial input to marine basins. In contrast, reconstruction based on sequences from the Atlantic Ocean side of the peninsula indicated increased humidity. The data highlight the unique characteristics of the MCA relative to earlier (the Dark Ages, DA: ca. 500-900 years AD) and subsequent (the Little Ice Age, LIA: 1300-1850 years AD) colder periods. The reconstruction supports the hypothesis of Trouet et al. (2009, doi:10.1126/science.1166349), that a persistent positive mode of the North Atlantic Oscillation (NAO) dominated the MCA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB 9503-5 retrieved from the mud-belt ( 50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term palaeoceanographic and palaeoenvironmental changes in subtropical NW Africa during the time interval from ca. 4200 to 1200 cal yr BP. Our study emphasizes significant coeval changes in continental and oceanic environments in and off Senegal and shows that initial dry conditions were followed by a strong and rapid increase in humidity between ca. 2900 and 2500 cal yr BP. After ca. 2500 cal yr BP, the environment slowly became drier again as indicated by slight increases in Sahelian savannah and desert elements in the pollen record. Around ca. 2200 cal yr BP, this relatively dry period ended with periodic pulses of high terrigenous contributions and strong fluctuations in fern spore and river plume dinoflagellate cyst percentages as well as in the fluxes of pollen, dinoflagellate cysts, fresh-water algae and plant cuticles, suggesting "episodic flash flood" events of the Senegal River. The driest phase developed after about 2100 cal yr BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed analyses of the Lake Van pollen, Ca/K ratio and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~75-15 ka BP). The climate within the last glacial was cold and dry, with low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~28-14.5 ka BP) dominated by the highest values of xerophytic steppe vegetation. Our high-resolution multi proxy record shows rapid expansions and contractions of tree populations that reflects variability in temperature and moisture availability. This rapid vegetation and environmental changes can be linked to the stadial-interstadial pattern of the Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which is responsible for the supply of humidity in eastern Anatolia. Influenced by diverse topography of the Lake Van catchment, larger DO interstadials (e.g. DO 19, 17-16, 14, 12 and 8) show the highest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, are identified in eastern Anatolia by AP values not lower and high steppe components not more abundant than during DO stadials. In addition, this work is a first attempt to establish a continuous microscopic charcoal record over the last glacial in the Near East, which documents an initial immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exceptional triple palynological signal (unusually high abundance of marine, freshwater, and terrestrial palynomorphs) recovered from a core collected during the 2007 ANDRILL (Antarctic geologic drilling program) campaign in the Ross Sea, Antarctica, provides constraints for the Middle Miocene Climatic Optimum. Compared to elsewhere in the core, this signal comprises a 2000-fold increase in two species of dinoflagellate cysts, a synchronous five-fold increase in freshwater algae, and up to an 80-fold increase in terrestrial pollen, including a proliferation of woody plants. Together, these shifts in the palynological assemblages ca. 15.7 Ma ago represent a relatively short period of time during which Antarctica became abruptly much warmer. Land temperatures reached 10 °C (January mean), estimated annual sea-surface temperatures ranged from 0 to 11.5 °C, and increased freshwater input lowered the salinity during a short period of sea-ice reduction.