4 resultados para Dramatic scheme

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Yangtze River Basin downstream of China's Three Gorges Dam (TGD) (thereafter referred to as "downstream" basin) hosts the largest cluster of freshwater lakes in East Asia. These lakes are crucial water stocks to local biophysical environments and socioeconomic development. Existing studies document that individual lakes in this region have recently experienced dramatic changes under the context of enduring meteorological drought, continuous population growth, and extensive water regulation since TGD's initial impoundment (i.e., June, 2003). However, spatial and temporal patterns of lake dynamics across the complete downstream Yangtze basin remain poorly characterized. Using daily MODIS imagery and an advanced thematic mapping scheme, this study presents a comprehensive monitoring of area dynamics in the downstream lake system at a 10-day temporal resolution during 2000-2011. The studied lakes constitute ~76% (~11,400 km**2) of the total downstream lake area, including the entire +70 major lakes larger than 20 km**2. The results reveal a decadal net decline in lake inundation area across the downstream Yangtze Basin, with a cumulative decrease of 849 km**2 or 7.4% from 2000 to 2011. Despite an excessive precipitation anomaly in the year 2010, the decreasing trend was tested significant in all seasons. The most substantial decrease in the post-TGD period appears in fall (1.1%/yr), which intriguingly coincides with the TGD water storage season. Regional lake dynamics exhibit contrasting spatial patterns, manifested as evident decrease and increase of aggregated lake areas respectively within and beyond the Yangtze Plain. This contrast suggests a marked vulnerability of lakes in the Yangtze Plain, to not only local meteorological variability but also intensified human water regulations from both the upstream Yangtze main stem (e.g., the TGD) and tributaries (e.g., lakes/reservoirs beyond the Yangtze Plain). The produced lake mapping result and derived lake area dynamics across the downstream Yangtze Basin provides a crucial monitoring basis for continuous investigations of changing mechanisms in the Yangtze lake system.