3 resultados para Double-repetitive element-polymerase chain reaction

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled the water column and surface sediments along a transect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering a range of station depths from 360 to 1430 m. Benthic denitrification and anammox rates were determined by using 15N-stable isotope pairing experiments. Intact core incubations showed declining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m**-2 day**-1. While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmol N m**-2 day**-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m**-2 day**-1. Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to 40% at 1430 m. This trend is further supported by the quantification of cd1-containing nitrite reductase (nirS), the biomarker functional gene encoding for cytochrome cd1-Nir of microorganisms involved in both N-loss processes. Anammox-like nirS genes within the sediments increased in proportion to total nirS gene copies with water depth. Moreover, phylogenetic analyses of NirS revealed different communities of both denitrifying and anammox bacteria between shallow and deep stations. Together, rate measurement and nirS analyses showed that anammox, determined for the first time in the Arabian Sea sediments, is an important benthic N-loss process at the continental margin off Pakistan, especially in the sediments at deeper water depths. Extrapolation from the measured benthic N-loss to all shelf sediments within the basin suggests that benthic N-loss may be responsible for about half of the overall N-loss in the Arabian Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical distributions of benthic denitrification and anammox rates within the sediment were estimated from slurry incubation experiments. Rates were used to calculate the contribution of anammox and denitrification to the total N-loss. Briefly, MUC sediment cores were sliced in 2 cm intervals and the sediment was diluted and incubated with degassed bottom water in a gas tight bag. After pre-incubating the bags for 2 h, 15N-labeled substrates were injected into the bags and the slurries were thoroughly mixed. Incubations were performed in the dark at in situ temperatures. The N2 isotope ratio (28N2, 29N2, and 30N2) was determined by gas chromatography-isotopic ratio mass spectrometry (VG Optima, Micromass) and calculated according to Kuypers et al. (2005) and Holtappels et al. (2011), respectively.Furthermore, total organic carbon and nitrogen concentrations were measured of core sediment layers corresponding to those used for rate measurements. Concentrations of organic carbon and nitrogen were determined by combustion/gas chromatography (Carlo Erba NA-1500 CNS analyzer) of dried sediment samples after acidification. The same sediment layer were also used to extract nucleic acids. The concentrations of the DNA in the samples were measured spectrophotometrically with a NanoDrop instrument (Thermo Fisher Scientific Inc.). The biomarker functional gene nirS, encoding the cd1-containing nitrite reductase, for both denitrifiers and marine anammox bacteria were quantified with real-time PCR, using the primers cd3aF/R3cd (5'-GTSAACGTSAAGGARACSGG-3' (Michotey et al., 2000)/5'-GASTTCGGRTGSGTCTTGA-3'; Throback et al., 2004) and Scnir372F/Scnir845R (5'-TGTAGCCAGCATTGTAGCGT-3'/5'-TCAAGCCAGACCCATTTGCT-3'; Lam et al., 2009).