471 resultados para Dongpan section Guangxi South China

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has been carried out in the Nha Trang Bay (Southern Vietnam, South China Sea) at a section from the estuary of the Cai River to the marine part of the bay, as well as in the area of coral reefs. River- and sea waters, suspended matter, and bottom sediments are studies. Data on dissolved organic carbon and total nitrogen in water are obtained. Organic carbon concentration is estimated in suspended matter; organic carbon and molecular and group compositions of n-alkanes are determined in bottom sediments. Molecular and group compositions of n-alkanes in bottom sediments of the landfill made it possible to identify three types of organic matter (OM): marine, mixed, and mainly of terrigenous origin. All these types of OM are closely related to specificity of sedimentation and hydrodynamics of waters in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 1146 (19°27.40'N, 116°16.37'E) was drilled in ~2092 m water depth in a rift basin on the continental slope of the South China Sea. A total of 607 m of sediment was cored in Hole 1146A, and a composite section from three holes extends down to 640 meters composite depth (mcd). Three stratigraphic sedimentary units were recognized at this site: late Pliocene to Pleistocene nannofossil clay (Unit I), middle Miocene to late Pliocene foraminifer and nannofossil clay mixed sediment (Unit II), and early to middle Miocene nannofossil clay (Unit III). This study reports the mineralogy from the late Miocene through early Pleistocene, 150-440 mcd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithobiostratigraphic data indicate that the double reflectors on the seismic profile through Ocean Drilling Program (ODP) Site 1148 represent two unconformities that coincide, respectively, with the lower/upper Oligocene boundary at ~488 mcd, and Oligocene-Miocene boundary at 460 mcd. Two other unconformities, at ~478 and 472 mcd, respectively, were also identified within the upper Oligocene section. Together they erased a sediment record of about 3 Ma from this locality in a period of very active seafloor spreading. The existence of 32.8 Ma marine sediment at the terminated depth (850 mcd) indicates that the initial breakup of the South China Sea (SCS) was probably during 34-33 Ma, close to the Eocene-Oligocene boundary. High sedimentation rates of 60-115 m/my from the much expanded, N350 m lower Oligocene section resulted from rifting and rapid subsidence between 33 and 29 Ma. The mid-Oligocene unconformity at ~28.5 Ma, which also occurred in many parts of the Indo-West Pacific region, was probably related to a significant uplift of the Himalayan-Tibetan Plateau to the west and the initial collision between Indonesia and Australia in the south. A narrowed Indonesian seaway may have accounted for the late Oligocene warming and chalk deposition in the northern South China Sea including the Site 1148 locality. The unconformities and slumps near the Oligocene-Miocene boundary indicate a very unstable tectonic regime, probably corresponding to changes in the rotation of different land blocks and the seafloor spreading ridge from nearly E-W to NE-SW, as recognized earlier at magnetic Anomaly 7. This 25 Ma event also saw the first New Guinea terrane docking at the northern Australian craton. The low sedimentation rate of ~15 m/my in the early to middle Miocene may correspond to another period of rapid seafloor spreading and rapid widespread subsidence that effectively caused sediment source areas to retreat with a rapidly rising sea level. The isostatic nature of these late Oligocene unconformities and slumps with several major collision-uplift events indicate that the rapid changes in the early evolutionary history of the South China Sea were mainly responding to regional tectonic reconfiguration including the uplift-driven southeast extrusion of the Indochina subcontinent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 1143 is located at 9°21.72'N, 113°17.11'E, at a water depth of 2772 m within a basin on the southern continental margin of the South China Sea. Three holes were cored at the site and combined into a composite (spliced) stratigraphic section that documents complete recovery for the upper 190.85 meters composite depth, the interval of advanced piston coring (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Wang et al., 2001, doi:10.1007/BF02907085). The early Pliocene to Holocene sediment sequence provided abundant and well-preserved calcareous microfossils and offered an excellent opportunity to establish foraminiferal stable isotope records. Here, we present benthic and planktonic d18O and d13C records that cover the last 5 m.y. These data sets will provide an important basis for upcoming studies to generate an orbitally tuned oxygen isotope stratigraphy and examine long- and short-term changes in deep and surface water mass signatures (temperature, salinity, and nutrients) with an average sample spacing of ~2.9 k.y. for the benthic and ~2.6 k.y. for the planktonic records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triassic turbidites of the Nanpanjiang basin of south China represent the most expansive and voluminous siliciclastic turbidite accumulation in south China. The Nanpanjiang basin occurs at a critical junction between the southern margin of the south China plate and the Indochina, Siamo and Sibumasu plates to the south and southwest. The Triassic Yangtze carbonate shelf and isolated carbonated platforms in the basin have been extensively studied, but silicilastic turbidites in the basin have received relatively little attention. Deciphering the facies, paleocurrent indicators and provenance of the Triassic turbidites is important for several reasons: it promises to help resolve the timing of plate collisions along suture zones bordering the basin to the south and southwest, it will enable evaluation of which suture zones and Precambrian massifs were source areas, and it will allow an evaluation of the impact of the siliciclastic flux on carbonate platform evolution within the basin. Turbidites in the basin include the Early Triassic Shipao Formation and the Middle-Late Triassic Baifeng, Xinyuan, Lanmu Bianyang and Laishike formations. Each ranges upward of 700 m and the thickest is nearly 3 km. The turbidites contain very-fine sand in the northern part of the basin whereas the central and southern parts of the basin also commonly contain fine and rarely medium sand size. Coarser sand sizes occur where paleocurrents are from the south, and in this area some turbidites exhibit complete bouma sequences with graded A divisions. Successions contain numerous alternations between mud-rich and sand-rich intervals with thickness trends corresponding to proximal/ distal fan components. Spectacularly preserved sedimentary structures enable robust evaluation of turbidite systems and paleocurrent analyses. Analysis of paleocurrent measurements indicates two major directions of sediment fill. The northern part of the basin was sourced primarily by the Jiangnan massif in the northeast, and the central and southern parts of the basin were sourced primarily from suture zones and the Yunkai massif to the south and southeast respectively. Sandstones of the Lower Triassic Shipao Fm. have volcaniclastic composition including embayed quartz and glass shards. Middle Triassic sandstones are moderately mature, matrix-rich, lithic wackes. The average QFL ratio from all point count samples is 54.1/18.1/27.8% and the QmFLt ratio is 37.8/ 18.1/ 44.1%. Lithic fragments are dominantly claystone and siltstone clasts and metasedimentary clasts such as quartz mica tectonite. Volcanic lithics are rare. Most samples fall in the recycled orogen field of QmFLt plots, indicating a relatively quartz and lithic rich composition consistent with derivation from Precambrian massifs such as the Jiangnan, and Yunkai. A few samples from the southwest part of the basin fall into the dissected arc field, indicating a somewhat more lithic and feldspar-rich composition consistent with derivation from a suture zone Analysis of detrial zircon populations from 17 samples collected across the basin indicate: (1) Several samples contain zircons with concordant ages greater than 3000 Ma, (2) there are widespread peaks across the basin at 1800 Ma and 2500, (3) a widespread 900 Ma population, (3) a widespread population of zircons at 440 Ma, and (5) a larger population of younger zircons about 250 Ma in the southwestern part which is replaced to the north and northwest by a somewhat older population around 260-290 Ma. The 900 Ma provenance fits derivation from the Jiangnan Massif, the 2500, 1800, and 440 Ma provenance fits the Yunkai massif, and the 250 Ma is consistent with convergence and arc development in suture zones bordering the basin on the south or southwest. Early siliciclastic turbidite flux, proximal to source areas impacted carbonate platform evolution by infilling the basin, reducing accommodation space, stabilizing carbonate platform margins and promoting margin progradation. Late arrival, in areas far from source areas caused margin aggradation over a starved basin, development of high relief aggradational escarpments and unstable scalloped margins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dinoflagellate stratigraphy is described for the section from 364.75 to 843.85 meters below seafloor (mbsf) at Site 1148 (Sections 184-1148A-40X-1 through 76X-6 and 184-1148B-39X-CC through 56X-1) in the South China Sea. Two assemblage zones and two subzones are defined, based on characteristics of the assemblages and lowest/highest occurrences of some key species. These are the Cleistosphaeridium diversispinosum Assemblage Zone (Zone A; Oligocene), with the Enneadocysta pectiniformis Subzone (Subzone A-1) and the Cordosphaeridium gracile Subzone (Subzone A-2), and the Polysphaeridium zoharyi Assemblage Zone (Zone B; early Miocene). The highest concurrent occurrence of Enneadocysta arcuata, Eneadocysta multicornuta, Homotryblium plectilum, and Homotryblium tenuispinosum delineates the upper boundary of Zone A, which appears to mark a hiatus. Subzone A-1 is of early Oligocene age, as evidenced by the highest occurrences of E. pectiniformis and Phthanoperidinium amoenum at the upper boundary of the subzone. Subzone A-2 is of late Oligocene age based on the highest occurrences of C. gracile and Wetzeliella gochtii close to the upper boundary of the subzone and the occurrence of Distatodinium ellipticum and Membranophoridium aspinatum within the subzone. Zone B is dated as early Miocene based on the lowest occurrences of Cerebrocysta satchelliae, Hystrichosphaeropsis obscura, Melitasphaeridium choanophorum, Membranilarnacia? picena, and Tuberculodinium vancampoae within the zone. The present assemblage zones/subzones are correlative to various degrees with coeval zones/assemblages from areas of high to low latitudes in terms of common key species. We have compared the species content of the assemblage Zones A and B, and the subzones A-1 and A-2, with coeval assemblage(s)/zone(s) described from many, often widely distant, high- and low-latitude regions of the world. These comparisons show that, to various degrees and aside from a number of key species, the coordinated presence of certain important species may also help to assign an age to a given assemblage.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.