8 resultados para Donahue,Theron

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practically continuous, paleomagnetically dated late Gauss-Brunhes sediment profiles of ODP Sites 699 and 701, south of the present Polar Front Zone (PFZ), and Site 704, north of the present PFZ, are used for a high-resolution study of abundance fluctuations of eight stratigraphic marker species in space and time. Ecological restrictions and preferences of the diatom species Hemidiscus karstenii, Actinocyclus ingens f. planus, Thalassiosira elliptipora, Thalassiosira kolbei, Thalassiosira vulnifica, Simonseniella barboi, Cosmiodiscus insignis, and Nitzschia weaveri are deduced. The ages of their first abundant appearance datums (FAAD), last-appearance datums (LAD), and last abundant appearance datums (LAAD) at the three sites are determined. The interpolated datum ages agree relatively well with those determined by other authors, if one interprets most of their LADs as LAADs. FAADs and LAADs produce more accurate datums than LADs. For the late Matuyama (younger than approximately 2.0 Ma), when PFZ fluctuations effected all three site sites, the datum ages determined agree within the methodically caused limits of accuracy for each datum. For the early Matuyama (older than approximately 2.0 Ma) the results can be interpreted as either that the ages of the FAAD of T. kolbei and LAAD of T. vulnifica datums determined at Sites 699 and 701 are more reliable or that these datums are diachronous between these two sites and Site 704. Such a diachroneity could be caused by different paleoceanographic conditions (stable subantarctic conditions over Site 704 and stable antarctic conditions over Sites 699 and 701). A few taxonomic changes were necessary. One new genus is defined (Simonseniella gen. nov.) and five new combinations are proposed: Simonseniella barboi (Brun) comb, nov., Simonseniella praebarboi (Schrader) comb, nov., Simonseniella curvirostris (Jousé) comb, nov., Thalassiosira elliptipora (Donahue) comb, nov., and Thalassiosira vulnifica (Gombos) comb. nov.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea surface temperature (SST) on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2 and temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest temperature-pCO2 condition. In contrast, dissolution increased linearly with temperature-pCO2 . The rubble community switched from net calcification to net dissolution at +271 µatm pCO2 and 0.75 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be more sensitive to climate change than calcification and (ii) that calcification and dissolution have different functional responses to climate stressors; this highlights the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 µm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter d18ONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform (~7 ka).