81 resultados para Dome Epithelium

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation and it can be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport, and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution aeolian dust record from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the last eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggests that dust flux is increasingly correlated with Antarctic temperature as climate becomes colder. We interpret this as progressive coupling of Antarctic and lower latitudes climate. Limited changes in glacial-interglacial atmospheric transport time Mahowald et al. (1999, doi:10.1029/1999JD900084), Jouzel et al. (2007, doi:10.1126/science.1141038), and Werner et al. (2002, doi:10.1029/2002JD002365) suggest that the sources and lifetime of dust are the major factors controlling the high glacial dust input. We propose that the observed ~25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer atmospheric dust particle life-time in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple glaciological conditions at Dome C in east Antarctica have made possible a more detailed and accurate interpretation of an ice core to 950 m depth spanning some 32,000 yr than that obtained from earlier ice cores. Dated events in comparable marine core has enabled the reduction of accumulation rate during the last ice age to be estimated. Climatic events recorded in the ice core indicate that the warmest Holocene period in the Southern Hemisphere occurred at an earlier date than in the Northern Hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.