2 resultados para Document analysis

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling penetrated pre-Mesozoic crystalline basement beneath abbreviated sedimentary sequences overlying fault blocks in the southeastern Gulf of Mexico. At Hole 538A, located on Catoche Knoll, a foliated, regional metamorphic association of variably mylonitic felsic gneisses and interlayered amphibolite is intruded by post-tectonic diabase dikes. Hornblende from the amphibolite displays internally discordant 40Ar/39Ar age spectra, suggesting initial post-metamorphic cooling at about 500 Ma followed by a mild thermal disturbance at about 200 Ma. Biotite from the gneiss yields a plateau age of 348 Ma, which is interpreted to result from incorporation of extraneous argon components when the biotite system was opened during the about 200 Ma thermal overprint. A whole-rich diabase sample from Hole 538A records a crystallization age of 190.4 ± 3.4 Ma. A lower grade phyllitic metasedimentary sequence was penetrated at Hole 537, drilled about 30 km northwest of Catoche Knoll. Whole-rock phyllite samples display internally discordant 40Ar/39Ar age spectra, but plateau segments clearly document an early Paleozoic metamorphism at about 500 Ma. The age and lithologic character of the basement terrane penetrated at Holes 537 and 538A suggest that the drilled fault blocks are underlain by attenuated fragments of continental crust of "Pan-African" affinity. This supports pre-Mesozoic tectonic reconstructions that locate Yucatan in the present Gulf recess during the amalgamation of Pangea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7- 21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur com- ponents. High sulfate reduction rates as well as sulfide depleted in 34S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic- hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.