5 resultados para Diversification in industry

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Isotopic depth stratification and relative abundance studies of planktic foraminifera at ODP Site 738 reveal three major faunal turnovers during the latest Paleocene and early Eocene, reflecting the climatic and structural changes in the Antarctic surface ocean. Faunal Event 1 occurred near the Paleocene/Eocene boundary and is characterized by a faunal turnover in deep dwellers, decreased relative abundance in intermediate dwellers and increased relative abundance in surface dwellers. This event marks a temporary elimination of the vertical structure in the surface ocean over a period of more than 63,000 years that is apparently associated with the sudden shutdown of the "Antarctic Intermediate Water" production. The appearance of morozovellids before this event suggests that polar warming is the cause for the shutdown in the production of this water mass. At this time warm saline deep water may have formed at low latitudes. Faunal Event 2 occurred near the AP5a/AP5b Subzonal boundary and is characterized by a faunal turnover in deep dwellers with no apparent change in surface and intermediate dwellers. Increased individual size, wall-thickness and relative abundance in deep dwelling chiloguembelinids suggests the formation of a deep oxygen minima in the Antarctic Oceans during the maximum polar warming possibly as a result of upwelling of nutrient-rich deep water. Faunal Event 3 occurred in Subzone AP6 and is characterized by a faunal turnover in surface dwellers and a delayed diversification in deep dwellers. This event marks the onset of Antarctic cooling. A drastic decrease in the delta13C/delta18O values of the deep assemblage in Zone AP7 suggests an intensified thermocline and reduced upwelling following the polar cooling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine-driven climate change. Location Middle to Late Miocene in the south-east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south-east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south-western African coast are the disappearance of Podocarpus-dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi-arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre-date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine-driven climate change in south-western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The family Munnopsidae was the most abundant and diverse among 22 isopod families collected by the ANDEEP deep-sea expeditions in 2002 and 2005 in the Atlantic sector of the Southern Ocean. A total of 219 species from 31 genera and eight subfamilies were analysed. Only 20% species were known to science, and 11% of these were reported outside the ANDEEP area mainly from other parts of the SO or the South Atlantic deep sea. One hundred and five species (50%) were rare, occurring at only 1 or 2 stations. Seventy-two percent of all munnopsid specimens belong to the most numerous 25 species with a total abundance of more than 75 specimens; 5 of these species (40% of all specimens) belong to the main genera of the world munnopsid fauna, Eurycope, Disconectes, Betamorpha, and Ilyarachna. About half of all munnopsid specimens and 34% of all species belong to the subfamily Eurycopinae, which is followed in occurrence by the Lipomerinae (19%). Munnopsinae is the poorest represented subfamily (1.5%). The composition of the subfamilies for the munnopsid fauna of the ANDEEP area differs from that of northern faunas. Lipomerinae show a lower percentage (7%) in the North Atlantic and are absent in the Arctic and in the North Pacific. This subfamily is considered as young and having a centre of origin and diversification in the Southern Ocean. The analyses of the taxonomic diversity and the distribution of Antarctic munnopsids and the distribution of the world fauna of all genera of the family revealed that species richness and diversity of the genera are highest in the ANDEEP area. The investigated fauna is characterised also by high percentage of endemic species, the highest richness and diversity of the main munnopsid genera and subfamily Lipomerinae. This supports the hypothesis that the Atlantic sector of SO deep sea may be considered as the main contemporary centre of diversification of the Munnopsidae. It might serve as a diversity pump of species of the Munnopsidae to more northern Atlantic areas via the deep water originating in the Weddell Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.