17 resultados para Distribuição log-normal

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We measured condensation particle (CP) concentrations and particle size distributions at the coastal Antarctic station Neumayer (70°39'S, 8°15'W) during two summer campaigns (from 20 January to 26 March 2012 and 1 February to 30 April 2014) and during polar night between 12 August and 27 September 2014 in the particle diameter (Dp) range from 2.94 nm to 60.4 nm (2012) and from 6.26 nm to 212.9 nm (2014). During both summer campaigns we identified all in all 44 new particle formation (NPF) events. From 10 NPF events, particle growth rates could be determined to be around 0.90±0.46 nm/h (mean ± std; range: 0.4 nm/h to 1.9 nm/h). With the exception of one case, particle growth was generally restricted to the nucleation mode (Dp < 25 nm) and the duration of NPF events was typically around 6.0±1.5 h (mean ± std; range: 4 h to 9 h). Thus in the main, particles did not grow up to sizes required for acting as cloud condensation nuclei. NPF during summer usually occurred in the afternoon in coherence with local photochemistry. During winter, two NPF events could be detected, though showing no ascertainable particle growth. A simple estimation indicated that apart from sulfuric acid, the derived growth rates required other low volatile precursor vapours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methane hydrates are present in marine seep systems and occur within the gas hydrate stability zone. Very little is known about their crystallite sizes and size distributions because they are notoriously difficult to measure. Crystal size distributions are usually considered as one of the key petrophysical parameters because they influence mechanical properties and possible compositional changes, which may occur with changing environmental conditions. Variations in grain size are relevant for gas substitution in natural hydrates by replacing CH4 with CO2 for the purpose of carbon dioxide sequestration. Here we show that crystallite sizes of gas hydrates from some locations in the Indian Ocean, Gulf of Mexico and Black Sea are in the range of 200-400 µm; larger values were obtained for deeper-buried samples from ODP Leg 204. The crystallite sizes show generally a log-normal distribution and appear to vary sometimes rapidly with location.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to experimental difficulties grain size distributions of gas hydrate crystallites are largely unknown in natural samples. For the first time, we were able to determine grain size distributions of six natural gas hydrates for samples retrieved from the Gulf of Mexico and from Hydrate Ridge offshore Oregon from varying depths. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. The gas hydrate crystallites appear to be (log-) normally distributed in the natural samples and to be of roughly globular shape. The mean grain sizes are in the range from 300-600 µm with a tendency for bigger grains to occur in greater depth, possibly indicating a difference in the formation age. Laboratory produced methane hydrate, starting from ice and aged for 3 weeks, shows half a log-normal curve with a mean value of ~40 µm. This one order-of-magnitude smaller grain sizes suggests that care must be taken when transposing grain-size sensitive (petro-)physical data from laboratory-made gas hydrates to natural settings.