3 resultados para Disinfection by-products
em Publishing Network for Geoscientific
Resumo:
We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.
Resumo:
Mixed terrigenous-pelagic sediments from the Oligocene-lower Miocene interval of Hole 1139A accumulated on the flank of an eroded alkalic volcano, Skiff Bank. In this study, I explore relationships among sediment fluxes, especially of organic carbon and the clay mineral by-products of silicate weathering, and lithologic, tectonic, climatic, and biologic forcing factors. Benthic foraminifers indicate that Skiff Bank had subsided to lower bathyal depths (1000-2000 m) by the Oligocene. Two prominent maxima in noncarbonate concentration at 28 and 22 Ma correspond to peaks in the terrigenous flux; also, high noncarbonate concentrations are associated with larger grain sizes (silt) and higher opal concentrations. These and higher-frequency variations of noncarbonate concentration were probably controlled by glacioeustatic/climatic changes, with higher noncarbonate concentrations caused by increased erosion during glacial lowstands. Around 27 Ma, benthic foraminiferal d18O values decreased 0.7 per mil as the noncarbonate concentration decreased after the 28-Ma maximum. A paucity of clay-sized sediment and clay minerals suggests that physical erosion, by waves and/or ice, predominated under weathering-limited conditions. Low organic carbon concentrations (~0.13 wt%) also suggest a harsh environment and/or poor preservation in coarse (>2 µm) sediments that were extensively bioturbated below the oxygen minimum zone.
Resumo:
Pore water extracted from sediments penetrated on Leg 164 of the Ocean Drilling Program at the Blake Ridge West. Atlantic were analyzed for acetate, total dissolved organic carbon, bromide and iodide, to help explain the occurrence of subsurface maxima in bacteria biomass and activity reported previously from a nearby site. The high concentrations of these organic matter decomposition by-products in the pore waters from sediments with moderate concentrations of sedimentary organic matter can convincingly be modelled as resulting from upward migration of pore water. The amount of acetate and unidentified DOC transported by the pore water contribute significantly to the pool of metabolizable carbon, and may be the most important substances in energetic terms.